Foundations of Quantum Programming

Lecture 2: Basics of Quantum Mechanics

Mingsheng Ying

University of Technology Sydney, Australia

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$ satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$ satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.
3. + has the zero element 0 , called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.
3. + has the zero element 0 , called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle$.
4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle+(-|\varphi\rangle)=0$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.
3. + has the zero element 0 , called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle$.
4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle+(-|\varphi\rangle)=0$.
5. $1|\varphi\rangle=|\varphi\rangle$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.
3. + has the zero element 0 , called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle$.
4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle+(-|\varphi\rangle)=0$.
5. $1|\varphi\rangle=|\varphi\rangle$.
6. $\lambda(\mu|\varphi\rangle)=\lambda \mu|\varphi\rangle$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.
3. + has the zero element 0 , called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle$.
4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle+(-|\varphi\rangle)=0$.
5. $1|\varphi\rangle=|\varphi\rangle$.
6. $\lambda(\mu|\varphi\rangle)=\lambda \mu|\varphi\rangle$.
7. $(\lambda+\mu)|\varphi\rangle=\lambda|\varphi\rangle+\mu|\varphi\rangle$.

Vector spaces

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+: \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot: \mathbb{C} \times \mathcal{H} \rightarrow \mathcal{H}$
satisfying the conditions:

1. + is commutative: $|\varphi\rangle+|\psi\rangle=|\psi\rangle+|\varphi\rangle$.
2. + is associative: $|\varphi\rangle+(|\psi\rangle+|\chi\rangle)=(|\varphi\rangle+|\psi\rangle)+|\chi\rangle$.
3. + has the zero element 0 , called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle$.
4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle+(-|\varphi\rangle)=0$.
5. $1|\varphi\rangle=|\varphi\rangle$.
6. $\lambda(\mu|\varphi\rangle)=\lambda \mu|\varphi\rangle$.
7. $(\lambda+\mu)|\varphi\rangle=\lambda|\varphi\rangle+\mu|\varphi\rangle$.
8. $\lambda(|\varphi\rangle+|\psi\rangle)=\lambda|\varphi\rangle+\lambda|\psi\rangle$.

Inner product

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the properties:

1. $\langle\varphi \mid \varphi\rangle \geq 0$ with equality if and only if $|\varphi\rangle=0$;

Inner product

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the properties:

1. $\langle\varphi \mid \varphi\rangle \geq 0$ with equality if and only if $|\varphi\rangle=0$;
2. $\langle\varphi \mid \psi\rangle=\langle\psi \mid \varphi\rangle^{*}$;

Inner product

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the properties:

1. $\langle\varphi \mid \varphi\rangle \geq 0$ with equality if and only if $|\varphi\rangle=0$;
2. $\langle\varphi \mid \psi\rangle=\langle\psi \mid \varphi\rangle^{*}$;
3. $\left\langle\varphi \mid \lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right\rangle=\lambda_{1}\left\langle\varphi \mid \psi_{1}\right\rangle+\lambda_{2}\left\langle\varphi \mid \psi_{2}\right\rangle$.

Inner product

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the properties:

1. $\langle\varphi \mid \varphi\rangle \geq 0$ with equality if and only if $|\varphi\rangle=0$;
2. $\langle\varphi \mid \psi\rangle=\langle\psi \mid \varphi\rangle^{*}$;
3. $\left\langle\varphi \mid \lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right\rangle=\lambda_{1}\left\langle\varphi \mid \psi_{1}\right\rangle+\lambda_{2}\left\langle\varphi \mid \psi_{2}\right\rangle$.

- If $\langle\varphi \mid \psi\rangle=0$, then $|\varphi\rangle$ and $|\psi\rangle$ are orthogonal, $|\varphi\rangle \perp|\psi\rangle$.

Inner product

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the properties:

1. $\langle\varphi \mid \varphi\rangle \geq 0$ with equality if and only if $|\varphi\rangle=0$;
2. $\langle\varphi \mid \psi\rangle=\langle\psi \mid \varphi\rangle^{*}$;
3. $\left\langle\varphi \mid \lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right\rangle=\lambda_{1}\left\langle\varphi \mid \psi_{1}\right\rangle+\lambda_{2}\left\langle\varphi \mid \psi_{2}\right\rangle$.

- If $\langle\varphi \mid \psi\rangle=0$, then $|\varphi\rangle$ and $|\psi\rangle$ are orthogonal, $|\varphi\rangle \perp|\psi\rangle$.
- The length of a vector $|\psi\rangle \in \mathcal{H}$ is

$$
\|\psi\|=\sqrt{\langle\psi \mid \psi\rangle} .
$$

Inner product

An inner product space is a vector space \mathcal{H} equipped with an inner product:

$$
\langle\cdot \mid \cdot\rangle: \mathcal{H} \times \mathcal{H} \rightarrow \mathbb{C}
$$

satisfying the properties:

1. $\langle\varphi \mid \varphi\rangle \geq 0$ with equality if and only if $|\varphi\rangle=0$;
2. $\langle\varphi \mid \psi\rangle=\langle\psi \mid \varphi\rangle^{*}$;
3. $\left\langle\varphi \mid \lambda_{1} \psi_{1}+\lambda_{2} \psi_{2}\right\rangle=\lambda_{1}\left\langle\varphi \mid \psi_{1}\right\rangle+\lambda_{2}\left\langle\varphi \mid \psi_{2}\right\rangle$.

- If $\langle\varphi \mid \psi\rangle=0$, then $|\varphi\rangle$ and $|\psi\rangle$ are orthogonal, $|\varphi\rangle \perp|\psi\rangle$.
- The length of a vector $|\psi\rangle \in \mathcal{H}$ is

$$
\|\psi\|=\sqrt{\langle\psi \mid \psi\rangle} .
$$

- A vector $|\psi\rangle$ is a unit vector if $\|\psi\|=1$.

Cauchy-limit

Let $\left\{\left|\psi_{n}\right\rangle\right\}$ be a sequence of vectors in \mathcal{H} and $|\psi\rangle \in \mathcal{H}$.

1. If for any $\epsilon>0$, there exists a positive integer N such that $\left\|\psi_{m}-\psi_{n}\right\|<\epsilon$ for all $m, n \geq N$, then $\left\{\left|\psi_{n}\right\rangle\right\}$ is a Cauchy sequence.

Cauchy-limit

Let $\left\{\left|\psi_{n}\right\rangle\right\}$ be a sequence of vectors in \mathcal{H} and $|\psi\rangle \in \mathcal{H}$.

1. If for any $\epsilon>0$, there exists a positive integer N such that $\left\|\psi_{m}-\psi_{n}\right\|<\epsilon$ for all $m, n \geq N$, then $\left\{\left|\psi_{n}\right\rangle\right\}$ is a Cauchy sequence.
2. If for any $\epsilon>0$, there exists a positive integer N such that $\left\|\psi_{n}-\psi\right\|<\epsilon$ for all $n \geq N$, then $|\psi\rangle$ is a limit of $\left\{\left|\psi_{n}\right\rangle\right\}$, $|\psi\rangle=\lim _{n \rightarrow \infty}\left|\psi_{n}\right\rangle$.

Hilbert spaces

A Hilbert space is a complete inner product space; that is, an inner product space in which each Cauchy sequence of vectors has a limit.

Bases

A finite or countably infinite family $\left\{\left|\psi_{i}\right\rangle\right\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

1. $\left\{\left|\psi_{i}\right\rangle\right\}$ are pairwise orthogonal: $\left|\psi_{i}\right\rangle \perp\left|\psi_{j}\right\rangle$ for any i, j with $i \neq j$;

Bases

A finite or countably infinite family $\left\{\left|\psi_{i}\right\rangle\right\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

1. $\left\{\left|\psi_{i}\right\rangle\right\}$ are pairwise orthogonal: $\left|\psi_{i}\right\rangle \perp\left|\psi_{j}\right\rangle$ for any i, j with $i \neq j$;
2. $\left\{\left|\psi_{i}\right\rangle\right\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|\psi_{i}\right\rangle
$$

Bases

A finite or countably infinite family $\left\{\left|\psi_{i}\right\rangle\right\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

1. $\left\{\left|\psi_{i}\right\rangle\right\}$ are pairwise orthogonal: $\left|\psi_{i}\right\rangle \perp\left|\psi_{j}\right\rangle$ for any i, j with $i \neq j$;
2. $\left\{\left|\psi_{i}\right\rangle\right\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|\psi_{i}\right\rangle .
$$

- The numbers of vectors in any two orthonormal bases are the same. It is called the dimension of $\mathcal{H}, \operatorname{dim} \mathcal{H}$.

Bases

A finite or countably infinite family $\left\{\left|\psi_{i}\right\rangle\right\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

1. $\left\{\left|\psi_{i}\right\rangle\right\}$ are pairwise orthogonal: $\left|\psi_{i}\right\rangle \perp\left|\psi_{j}\right\rangle$ for any i, j with $i \neq j$;
2. $\left\{\left|\psi_{i}\right\rangle\right\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|\psi_{i}\right\rangle .
$$

- The numbers of vectors in any two orthonormal bases are the same. It is called the dimension of $\mathcal{H}, \operatorname{dim} \mathcal{H}$.
- If an orthonormal basis contains infinitely many vectors, then $\operatorname{dim} \mathcal{H}=\infty$.

Bases

A finite or countably infinite family $\left\{\left|\psi_{i}\right\rangle\right\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

1. $\left\{\left|\psi_{i}\right\rangle\right\}$ are pairwise orthogonal: $\left|\psi_{i}\right\rangle \perp\left|\psi_{j}\right\rangle$ for any i, j with $i \neq j$;
2. $\left\{\left|\psi_{i}\right\rangle\right\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$
|\psi\rangle=\sum_{i} \lambda_{i}\left|\psi_{i}\right\rangle .
$$

- The numbers of vectors in any two orthonormal bases are the same. It is called the dimension of $\mathcal{H}, \operatorname{dim} \mathcal{H}$.
- If an orthonormal basis contains infinitely many vectors, then $\operatorname{dim} \mathcal{H}=\infty$.
- If $\operatorname{dim} \mathcal{H}=n$, fix an orthonormal basis $\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle\right\}$, then a vector $|\psi\rangle=\sum_{i=1}^{n} \lambda_{i}\left|\psi_{i}\right\rangle \in \mathcal{H}$ is represented by the vector in \mathbb{C}^{n} :

$$
\left(\begin{array}{c}
\lambda_{1} \\
\ldots \\
\lambda_{n}
\end{array}\right)
$$

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
then X is called a subspace of \mathcal{H}.

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
$1.1|\varphi\rangle+|\psi\rangle \in X ;$
then X is called a subspace of \mathcal{H}.

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
$1.1|\varphi\rangle+|\psi\rangle \in X ;$
$1.2 \lambda|\varphi\rangle \in X$,
then X is called a subspace of \mathcal{H}.

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
$1.1|\varphi\rangle+|\psi\rangle \in X ;$
$1.2 \lambda|\varphi\rangle \in X$,
then X is called a subspace of \mathcal{H}.
2. For each $X \subseteq \mathcal{H}$, its closure \bar{X} is the set of limits $\lim _{n \rightarrow \infty}\left|\psi_{n}\right\rangle$ of sequences $\left\{\left|\psi_{n}\right\rangle\right\}$ in X.

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
$1.1|\varphi\rangle+|\psi\rangle \in X ;$
$1.2 \lambda|\varphi\rangle \in X$,
then X is called a subspace of \mathcal{H}.
2. For each $X \subseteq \mathcal{H}$, its closure \bar{X} is the set of limits $\lim _{n \rightarrow \infty}\left|\psi_{n}\right\rangle$ of sequences $\left\{\left|\psi_{n}\right\rangle\right\}$ in X.
3. A subspace X of \mathcal{H} is closed if $\bar{X}=X$.

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
$1.1|\varphi\rangle+|\psi\rangle \in X ;$
$1.2 \lambda|\varphi\rangle \in X$,
then X is called a subspace of \mathcal{H}.
2. For each $X \subseteq \mathcal{H}$, its closure \bar{X} is the set of limits $\lim _{n \rightarrow \infty}\left|\psi_{n}\right\rangle$ of sequences $\left\{\left|\psi_{n}\right\rangle\right\}$ in X.
3. A subspace X of \mathcal{H} is closed if $\bar{X}=X$.

- For $X \subseteq \mathcal{H}$, the space spanned by X :

$$
\operatorname{span} X=\left\{\sum_{i=1}^{n} \lambda_{i}\left|\psi_{i}\right\rangle: n \geq 0, \lambda_{i} \in \mathbb{C} \text { and }\left|\psi_{i}\right\rangle \in X(i=1, \ldots, n)\right\}
$$

Closed-subspace

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle,|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
$1.1|\varphi\rangle+|\psi\rangle \in X ;$
$1.2 \lambda|\varphi\rangle \in X$,
then X is called a subspace of \mathcal{H}.
2. For each $X \subseteq \mathcal{H}$, its closure \bar{X} is the set of limits $\lim _{n \rightarrow \infty}\left|\psi_{n}\right\rangle$ of sequences $\left\{\left|\psi_{n}\right\rangle\right\}$ in X.
3. A subspace X of \mathcal{H} is closed if $\bar{X}=X$.

- For $X \subseteq \mathcal{H}$, the space spanned by X :

$$
\operatorname{span} X=\left\{\sum_{i=1}^{n} \lambda_{i}\left|\psi_{i}\right\rangle: n \geq 0, \lambda_{i} \in \mathbb{C} \text { and }\left|\psi_{i}\right\rangle \in X(i=1, \ldots, n)\right\}
$$

- $\overline{\operatorname{spanX}}$ is the closed subspace generated by X.

1. For any $X, Y \subseteq \mathcal{H}, X$ and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp|\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
2. For any $X, Y \subseteq \mathcal{H}, X$ and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp|\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
3. The orthocomplement of a closed subspace X of \mathcal{H} is

$$
X^{\perp}=\{|\varphi\rangle \in \mathcal{H}:|\varphi\rangle \perp X\} .
$$

1. For any $X, Y \subseteq \mathcal{H}, X$ and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp|\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
2. The orthocomplement of a closed subspace X of \mathcal{H} is

$$
X^{\perp}=\{|\varphi\rangle \in \mathcal{H}:|\varphi\rangle \perp X\} .
$$

3. The orthocomplement X^{\perp} is a closed subspace of $\mathcal{H},\left(X^{\perp}\right)^{\perp}=X$.
4. For any $X, Y \subseteq \mathcal{H}, X$ and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp|\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
5. The orthocomplement of a closed subspace X of \mathcal{H} is

$$
X^{\perp}=\{|\varphi\rangle \in \mathcal{H}:|\varphi\rangle \perp X\} .
$$

3. The orthocomplement X^{\perp} is a closed subspace of $\mathcal{H},\left(X^{\perp}\right)^{\perp}=X$.
4. Let X, Y be two subspaces of \mathcal{H}. Then

$$
X \oplus Y=\{|\varphi\rangle+|\psi\rangle:|\varphi\rangle \in X \text { and }|\psi\rangle \in Y\} .
$$

Postulate of quantum mechanics 1

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.

Postulate of quantum mechanics 1

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.

Postulate of quantum mechanics 1

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.

Postulate of quantum mechanics 1

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.
- A linear combination $|\psi\rangle=\sum_{i=1}^{n} \lambda_{i}\left|\psi_{i}\right\rangle$ of states $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$ is often called their superposition

Postulate of quantum mechanics 1

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.
- A linear combination $|\psi\rangle=\sum_{i=1}^{n} \lambda_{i}\left|\psi_{i}\right\rangle$ of states $\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle$ is often called their superposition
- Complex coefficients λ_{i} are called probability amplitudes.

Example: Qubits

- 2-dimensional Hilbert space:

$$
\mathcal{H}_{2}=\mathbb{C}^{2}=\{\alpha|0\rangle+\beta|1\rangle: \alpha, \beta \in \mathbb{C}\} .
$$

Example: Qubits

- 2-dimensional Hilbert space:

$$
\mathcal{H}_{2}=\mathbb{C}^{2}=\{\alpha|0\rangle+\beta|1\rangle: \alpha, \beta \in \mathbb{C}\} .
$$

- Inner product:

$$
\left(\alpha|0\rangle+\beta|1\rangle, \alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right)=\alpha^{*} \alpha^{\prime}+\beta^{*} \beta^{\prime} .
$$

Example: Qubits

- 2-dimensional Hilbert space:

$$
\mathcal{H}_{2}=\mathbb{C}^{2}=\{\alpha|0\rangle+\beta|1\rangle: \alpha, \beta \in \mathbb{C}\} .
$$

- Inner product:

$$
\left(\alpha|0\rangle+\beta|1\rangle, \alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right)=\alpha^{*} \alpha^{\prime}+\beta^{*} \beta^{\prime} .
$$

- $\{|0\rangle,|1\rangle\}$ is an orthonormal basis of \mathcal{H}_{2}, the computational basis.

Example: Qubits

- 2-dimensional Hilbert space:

$$
\mathcal{H}_{2}=\mathbb{C}^{2}=\{\alpha|0\rangle+\beta|1\rangle: \alpha, \beta \in \mathbb{C}\} .
$$

- Inner product:

$$
\left(\alpha|0\rangle+\beta|1\rangle, \alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right)=\alpha^{*} \alpha^{\prime}+\beta^{*} \beta^{\prime} .
$$

- $\{|0\rangle,|1\rangle\}$ is an orthonormal basis of \mathcal{H}_{2}, the computational basis.
- A state of a qubit is described by a unit vector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$.

Example: Qubits

- 2-dimensional Hilbert space:

$$
\mathcal{H}_{2}=\mathbb{C}^{2}=\{\alpha|0\rangle+\beta|1\rangle: \alpha, \beta \in \mathbb{C}\} .
$$

- Inner product:

$$
\left(\alpha|0\rangle+\beta|1\rangle, \alpha^{\prime}|0\rangle+\beta^{\prime}|1\rangle\right)=\alpha^{*} \alpha^{\prime}+\beta^{*} \beta^{\prime} .
$$

- $\{|0\rangle,|1\rangle\}$ is an orthonormal basis of \mathcal{H}_{2}, the computational basis.
- A state of a qubit is described by a unit vector $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ with $|\alpha|^{2}+|\beta|^{2}=1$.

Example: Square summable sequences

- The space of square summable sequences:

$$
\mathcal{H}_{\infty}=\left\{\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle: \alpha_{n} \in \mathbb{C} \text { for all } n \in \mathbb{Z} \text { and } \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2}<\infty\right\}
$$

Example: Square summable sequences

- The space of square summable sequences:

$$
\mathcal{H}_{\infty}=\left\{\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle: \alpha_{n} \in \mathbb{C} \text { for all } n \in \mathbb{Z} \text { and } \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2}<\infty\right\}
$$

- Inner product:

$$
\left(\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle, \sum_{n=-\infty}^{\infty} \alpha^{\prime}|n\rangle\right)=\sum_{n=-\infty}^{\infty} \alpha_{n}^{*} \alpha_{n}^{\prime}
$$

Example: Square summable sequences

- The space of square summable sequences:

$$
\mathcal{H}_{\infty}=\left\{\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle: \alpha_{n} \in \mathbb{C} \text { for all } n \in \mathbb{Z} \text { and } \sum_{n=-\infty}^{\infty}\left|\alpha_{n}\right|^{2}<\infty\right\} .
$$

- Inner product:

$$
\left(\sum_{n=-\infty}^{\infty} \alpha_{n}|n\rangle, \sum_{n=-\infty}^{\infty} \alpha^{\prime}|n\rangle\right)=\sum_{n=-\infty}^{\infty} \alpha_{n}^{*} \alpha_{n}^{\prime} .
$$

- $\{|n\rangle: n \in \mathbb{Z}\}$ is an orthonormal basis, \mathcal{H}_{∞} is infinite-dimensional.

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

Linear Operators

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$
A: \mathcal{H} \rightarrow \mathcal{K}
$$

is a linear operator if it satisfies the conditions:

1. $A(|\varphi\rangle+|\psi\rangle)=A|\varphi\rangle+A|\psi\rangle$;

Linear Operators

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$
A: \mathcal{H} \rightarrow \mathcal{K}
$$

is a linear operator if it satisfies the conditions:

1. $A(|\varphi\rangle+|\psi\rangle)=A|\varphi\rangle+A|\psi\rangle$;
2. $A(\lambda|\psi\rangle)=\lambda A|\psi\rangle$.

Examples

Linear Operators

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$
A: \mathcal{H} \rightarrow \mathcal{K}
$$

is a linear operator if it satisfies the conditions:

1. $A(|\varphi\rangle+|\psi\rangle)=A|\varphi\rangle+A|\psi\rangle$;
2. $A(\lambda|\psi\rangle)=\lambda A|\psi\rangle$.

Examples

- Identity operator maps each vector in \mathcal{H} to itself, denoted $I_{\mathcal{H}}$.

Linear Operators

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$
A: \mathcal{H} \rightarrow \mathcal{K}
$$

is a linear operator if it satisfies the conditions:

1. $A(|\varphi\rangle+|\psi\rangle)=A|\varphi\rangle+A|\psi\rangle$;
2. $A(\lambda|\psi\rangle)=\lambda A|\psi\rangle$.

Examples

- Identity operator maps each vector in \mathcal{H} to itself, denoted $I_{\mathcal{H}}$.
- Zero operator maps every vector in \mathcal{H} to the zero vector, denoted $0_{\mathcal{H}}$.

Linear Operators

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$
A: \mathcal{H} \rightarrow \mathcal{K}
$$

is a linear operator if it satisfies the conditions:

1. $A(|\varphi\rangle+|\psi\rangle)=A|\varphi\rangle+A|\psi\rangle$;
2. $A(\lambda|\psi\rangle)=\lambda A|\psi\rangle$.

Examples

- Identity operator maps each vector in \mathcal{H} to itself, denoted $I_{\mathcal{H}}$.
- Zero operator maps every vector in \mathcal{H} to the zero vector, denoted $0_{\mathcal{H}}$.
- For vectors $|\varphi\rangle,|\psi\rangle \in \mathcal{H}$, their outer product is the operator $|\varphi\rangle\langle\psi|$ in \mathcal{H} :

$$
(|\varphi\rangle\langle\psi|)|\chi\rangle=\langle\psi \mid \chi\rangle|\varphi\rangle .
$$

Projection

- Let X be a closed subspace of \mathcal{H} and $|\psi\rangle \in \mathcal{H}$. Then there exist uniquely $\left|\psi_{0}\right\rangle \in X$ and $\left|\psi_{1}\right\rangle \in X^{\perp}$ such that

$$
|\psi\rangle=\left|\psi_{0}\right\rangle+\left|\psi_{1}\right\rangle .
$$

Projection

- Let X be a closed subspace of \mathcal{H} and $|\psi\rangle \in \mathcal{H}$. Then there exist uniquely $\left|\psi_{0}\right\rangle \in X$ and $\left|\psi_{1}\right\rangle \in X^{\perp}$ such that

$$
|\psi\rangle=\left|\psi_{0}\right\rangle+\left|\psi_{1}\right\rangle .
$$

- Vector $\left|\psi_{0}\right\rangle$ is called the projection of $|\psi\rangle$ onto $X,\left|\psi_{0}\right\rangle=P_{X}|\psi\rangle$.

Projection

- Let X be a closed subspace of \mathcal{H} and $|\psi\rangle \in \mathcal{H}$. Then there exist uniquely $\left|\psi_{0}\right\rangle \in X$ and $\left|\psi_{1}\right\rangle \in X^{\perp}$ such that

$$
|\psi\rangle=\left|\psi_{0}\right\rangle+\left|\psi_{1}\right\rangle .
$$

- Vector $\left|\psi_{0}\right\rangle$ is called the projection of $|\psi\rangle$ onto $X,\left|\psi_{0}\right\rangle=P_{X}|\psi\rangle$.
- For closed subspace X of \mathcal{H}, the operator

$$
P_{X}: \mathcal{H} \rightarrow X, \quad|\psi\rangle \mapsto P_{X}|\psi\rangle
$$

is the projector onto X.

Bounded operators

- An operator A is bounded if there is a constant $C \geq 0$ such that

$$
\| A|\psi\rangle\|\leq C \cdot\| \psi \|
$$

for all $|\psi\rangle \in \mathcal{H}$.

Bounded operators

- An operator A is bounded if there is a constant $C \geq 0$ such that

$$
\| A|\psi\rangle\|\leq C \cdot\| \psi \|
$$

for all $|\psi\rangle \in \mathcal{H}$.

- The norm of A is

$$
\|A\|=\inf \{C \geq 0: \| A|\psi\rangle\|\leq C \cdot\| \psi \| \text { for all } \psi \in \mathcal{H}\}
$$

Bounded operators

- An operator A is bounded if there is a constant $C \geq 0$ such that

$$
\| A|\psi\rangle\|\leq C \cdot\| \psi \|
$$

for all $|\psi\rangle \in \mathcal{H}$.

- The norm of A is

$$
\|A\|=\inf \{C \geq 0: \| A|\psi\rangle\|\leq C \cdot\| \psi \| \text { for all } \psi \in \mathcal{H}\}
$$

- $\mathcal{L}(\mathcal{H})$ stands for the set of bounded operators in \mathcal{H}.

Operations of operators

$$
\begin{aligned}
(A+B)|\psi\rangle & =A|\psi\rangle+B|\psi\rangle, \\
(\lambda A)|\psi\rangle & =\lambda(A|\psi\rangle), \\
(B A)|\psi\rangle & =B(A|\psi\rangle) .
\end{aligned}
$$

Operations of operators

$$
\begin{aligned}
(A+B)|\psi\rangle & =A|\psi\rangle+B|\psi\rangle, \\
(\lambda A)|\psi\rangle & =\lambda(A|\psi\rangle), \\
(B A)|\psi\rangle & =B(A|\psi\rangle) .
\end{aligned}
$$

Positive operators
An operator $A \in \mathcal{L}(\mathcal{H})$ is positive if for all states $|\psi\rangle \in \mathcal{H}$:

$$
\langle\psi| A|\psi\rangle \geq 0 .
$$

Löwner order

$A \sqsubseteq B$ if and only if $B-A=B+(-1) A$ is positive.

Löwner order
$A \sqsubseteq B$ if and only if $B-A=B+(-1) A$ is positive.

Distance between operators

$$
d(A, B)=\sup _{|\psi\rangle}| | A|\psi\rangle-B|\psi\rangle \|
$$

Matrix Representation of Operators

- When $\operatorname{dim} \mathcal{H}=n$, fix orthonormal basis $\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle\right\}, A$ can be represented by the $n \times n$ complex matrix:

$$
A=\left(a_{i j}\right)_{n \times n}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
& \ldots & \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

where $a_{i j}=\left\langle\psi_{i}\right| A\left|\psi_{j}\right\rangle=\left(\left|\psi_{i}\right\rangle, A\left|\psi_{j}\right\rangle\right)$.

Matrix Representation of Operators

- When $\operatorname{dim} \mathcal{H}=n$, fix orthonormal basis $\left\{\left|\psi_{1}\right\rangle, \ldots,\left|\psi_{n}\right\rangle\right\}, A$ can be represented by the $n \times n$ complex matrix:

$$
A=\left(a_{i j}\right)_{n \times n}=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
& \ldots & \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

where $a_{i j}=\left\langle\psi_{i}\right| A\left|\psi_{j}\right\rangle=\left(\left|\psi_{i}\right\rangle, A\left|\psi_{j}\right\rangle\right)$.

- If $|\psi\rangle=\sum_{i=1}^{n} \alpha_{i}\left|\psi_{i}\right\rangle$, then

$$
A|\psi\rangle=A\left(\begin{array}{c}
\alpha_{1} \\
\ldots \\
\alpha_{n}
\end{array}\right)=\left(\begin{array}{c}
\beta_{1} \\
\ldots \\
\beta_{n}
\end{array}\right)
$$

where $\beta_{i}=\sum_{j=1}^{n} a_{i j} \alpha_{j}$.

Unitary Transformations

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle, A^{\dagger}|\psi\rangle\right) .
$$

Unitary Transformations

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle, A^{\dagger}|\psi\rangle\right) .
$$

- Operator A^{+}is called the adjoint of A.

Unitary Transformations

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle, A^{\dagger}|\psi\rangle\right) .
$$

- Operator A^{+}is called the adjoint of A.
- If $A=\left(a_{i j}\right)_{n \times n^{\prime}}$, then

$$
A^{+}=\left(b_{i j}\right)_{n \times n}
$$

with $b_{i j}=a_{j i}^{*}$.

Unitary Transformations

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle, A^{\dagger}|\psi\rangle\right) .
$$

- Operator A^{+}is called the adjoint of A.
- If $A=\left(a_{i j}\right)_{n \times n^{\prime}}$, then

$$
A^{+}=\left(b_{i j}\right)_{n \times n}
$$

with $b_{i j}=a_{j i}^{*}$.

- An operator $U \in \mathcal{L}(\mathcal{H})$ is unitary if $U^{\dagger} U=U U^{\dagger}=I_{\mathcal{H}}$.

Unitary Transformations

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle, A^{\dagger}|\psi\rangle\right) .
$$

- Operator A^{+}is called the adjoint of A.
- If $A=\left(a_{i j}\right)_{n \times n^{\prime}}$, then

$$
A^{+}=\left(b_{i j}\right)_{n \times n}
$$

with $b_{i j}=a_{j i}^{*}$.

- An operator $U \in \mathcal{L}(\mathcal{H})$ is unitary if $U^{\dagger} U=U U^{\dagger}=I_{\mathcal{H}}$.
- All unitary transformations U preserve inner product:

$$
(U|\varphi\rangle, U|\psi\rangle)=\langle\varphi \mid \psi\rangle .
$$

Unitary Transformations

- For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$
(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle, A^{\dagger}|\psi\rangle\right) .
$$

- Operator A^{+}is called the adjoint of A.
- If $A=\left(a_{i j}\right)_{n \times n^{\prime}}$, then

$$
A^{+}=\left(b_{i j}\right)_{n \times n}
$$

with $b_{i j}=a_{j i}^{*}$.

- An operator $U \in \mathcal{L}(\mathcal{H})$ is unitary if $U^{\dagger} U=U U^{\dagger}=I_{\mathcal{H}}$.
- All unitary transformations U preserve inner product:

$$
(U|\varphi\rangle, U|\psi\rangle)=\langle\varphi \mid \psi\rangle .
$$

- If $\operatorname{dim} \mathcal{H}=n$, then a unitary operator is represented by an $n \times n$ unitary matrix U : $U^{\dagger} U=I_{n}$.

Postulate of quantum mechanics 2

- Suppose that the states of a closed quantum system (i.e. a system without interactions with its environment) at times t_{0} and t are $\left|\psi_{0}\right\rangle$ and $|\psi\rangle$, respectively.

Postulate of quantum mechanics 2

- Suppose that the states of a closed quantum system (i.e. a system without interactions with its environment) at times t_{0} and t are $\left|\psi_{0}\right\rangle$ and $|\psi\rangle$, respectively.
- Then they are related to each other by a unitary operator U which depends only on the times t_{0} and t,

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle .
$$

Example: Hadamard transformation

$$
\begin{gathered}
H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
H|0\rangle=H\binom{1}{0}=\frac{1}{\sqrt{2}}\binom{1}{1}=|+\rangle, \\
H|1\rangle=H\binom{0}{1}=\frac{1}{\sqrt{2}}\binom{1}{-1}=|-\rangle .
\end{gathered}
$$

Example: Translation

- Let k be an integer. The k-translation operator T_{k} in \mathcal{H}_{∞} is defined by

$$
T_{k}|n\rangle=|n+k\rangle
$$

for all $n \in \mathbb{Z}$.

Example: Translation

- Let k be an integer. The k-translation operator T_{k} in \mathcal{H}_{∞} is defined by

$$
T_{k}|n\rangle=|n+k\rangle
$$

for all $n \in \mathbb{Z}$.

- $T_{L}=T_{-1}$ and $T_{R}=T_{1}$. They moves a particle on the line one position to the left and to the right, respectively.

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

Postulate of quantum mechanics 3

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of operators satisfying the normalisation condition:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}
$$

Postulate of quantum mechanics 3

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of operators satisfying the normalisation condition:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}
$$

- M_{m} are called measurement operators.

Postulate of quantum mechanics 3

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of operators satisfying the normalisation condition:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}
$$

- M_{m} are called measurement operators.
- The index m stands for the measurement outcomes that may occur in the experiment.

Postulate of quantum mechanics 3

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of operators satisfying the normalisation condition:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}
$$

- M_{m} are called measurement operators.
- The index m stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is $|\psi\rangle$ immediately before the measurement, then for each m,

Postulate of quantum mechanics 3

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of operators satisfying the normalisation condition:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}
$$

- M_{m} are called measurement operators.
- The index m stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is $|\psi\rangle$ immediately before the measurement, then for each m,
- the probability that result m occurs in the measurement is

$$
p(m)=\| M_{m}|\psi\rangle \|^{2}=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle \quad \text { (Born rule) }
$$

Postulate of quantum mechanics 3

- A quantum measurement on a system with state Hilbert space \mathcal{H} is described by a collection $\left\{M_{m}\right\} \subseteq \mathcal{L}(\mathcal{H})$ of operators satisfying the normalisation condition:

$$
\sum_{m} M_{m}^{\dagger} M_{m}=I_{\mathcal{H}}
$$

- M_{m} are called measurement operators.
- The index m stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is $|\psi\rangle$ immediately before the measurement, then for each m,
- the probability that result m occurs in the measurement is

$$
p(m)=\| M_{m}|\psi\rangle \|^{2}=\langle\psi| M_{m}^{\dagger} M_{m}|\psi\rangle \quad \text { (Born rule) }
$$

- the state of the system after the measurement with outcome m is

$$
\left|\psi_{m}\right\rangle=\frac{M_{m}|\psi\rangle}{\sqrt{p(m)}}
$$

Example

- The measurement of a qubit in the computational basis:

$$
M_{0}=|0\rangle\langle 0|, \quad M_{1}=|1\rangle\langle 1| .
$$

Example

- The measurement of a qubit in the computational basis:

$$
M_{0}=|0\rangle\langle 0|, \quad M_{1}=|1\rangle\langle 1| .
$$

- If the qubit was in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ before the measurement, then:

Example

- The measurement of a qubit in the computational basis:

$$
M_{0}=|0\rangle\langle 0|, \quad M_{1}=|1\rangle\langle 1| .
$$

- If the qubit was in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ before the measurement, then:
- the probability of obtaining outcome 0 is

$$
p(0)=\langle\psi| M_{0}^{\dagger} M_{0}|\psi\rangle=\langle\psi| M_{0}|\psi\rangle=|\alpha|^{2},
$$

the state after the measurement is

$$
\frac{M_{0}|\psi\rangle}{\sqrt{p(0)}}=|0\rangle
$$

Example

- The measurement of a qubit in the computational basis:

$$
M_{0}=|0\rangle\langle 0|, \quad M_{1}=|1\rangle\langle 1| .
$$

- If the qubit was in state $|\psi\rangle=\alpha|0\rangle+\beta|1\rangle$ before the measurement, then:
- the probability of obtaining outcome 0 is

$$
p(0)=\langle\psi| M_{0}^{\dagger} M_{0}|\psi\rangle=\langle\psi| M_{0}|\psi\rangle=|\alpha|^{2},
$$

the state after the measurement is

$$
\frac{M_{0}|\psi\rangle}{\sqrt{p(0)}}=|0\rangle
$$

- the probability of outcome 1 is $p(1)=|\beta|^{2}$, the state after the measurement is $|1\rangle$.

Hermitian Operators, Observables

- An operator $M \in \mathcal{L}(\mathcal{H})$ is Hermitian if it is self-adjoint:

$$
M^{\dagger}=M
$$

In physics, a Hermitian operator is called an observable.

Hermitian Operators, Observables

- An operator $M \in \mathcal{L}(\mathcal{H})$ is Hermitian if it is self-adjoint:

$$
M^{\dagger}=M
$$

In physics, a Hermitian operator is called an observable.

- An operator P is a projector: $P=P_{X}$ for some closed subspace X of \mathcal{H}, if and only if P is Hermitian and $P^{2}=P$.

Eigenvectors, Eigenvalues

Hermitian Operators, Observables

- An operator $M \in \mathcal{L}(\mathcal{H})$ is Hermitian if it is self-adjoint:

$$
M^{\dagger}=M
$$

In physics, a Hermitian operator is called an observable.

- An operator P is a projector: $P=P_{X}$ for some closed subspace X of \mathcal{H}, if and only if P is Hermitian and $P^{2}=P$.

Eigenvectors, Eigenvalues

- An eigenvector of an operator A is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle=\lambda|\psi\rangle$ for some $\lambda \in \mathbb{C}$.

Hermitian Operators, Observables

- An operator $M \in \mathcal{L}(\mathcal{H})$ is Hermitian if it is self-adjoint:

$$
M^{\dagger}=M
$$

In physics, a Hermitian operator is called an observable.

- An operator P is a projector: $P=P_{X}$ for some closed subspace X of \mathcal{H}, if and only if P is Hermitian and $P^{2}=P$.

Eigenvectors, Eigenvalues

- An eigenvector of an operator A is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle=\lambda|\psi\rangle$ for some $\lambda \in \mathbb{C}$.
- λ is called the eigenvalue of A corresponding to $|\psi\rangle$.

Hermitian Operators, Observables

- An operator $M \in \mathcal{L}(\mathcal{H})$ is Hermitian if it is self-adjoint:

$$
M^{\dagger}=M
$$

In physics, a Hermitian operator is called an observable.

- An operator P is a projector: $P=P_{X}$ for some closed subspace X of \mathcal{H}, if and only if P is Hermitian and $P^{2}=P$.

Eigenvectors, Eigenvalues

- An eigenvector of an operator A is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle=\lambda|\psi\rangle$ for some $\lambda \in \mathbb{C}$.
- λ is called the eigenvalue of A corresponding to $|\psi\rangle$.
- The set of eigenvalues of A is called the (point) spectrum of A and denoted $\operatorname{spec}(A)$.

Eigenspaces

- For each eigenvalue $\lambda \in \operatorname{spec}(A)$, the set

$$
\{|\psi\rangle \in \mathcal{H}: A|\psi\rangle=\lambda|\psi\rangle\}
$$

is a closed subspace of \mathcal{H} and called the eigenspace of A corresponding to λ.

Eigenspaces

- For each eigenvalue $\lambda \in \operatorname{spec}(A)$, the set

$$
\{|\psi\rangle \in \mathcal{H}: A|\psi\rangle=\lambda|\psi\rangle\}
$$

is a closed subspace of \mathcal{H} and called the eigenspace of A corresponding to λ.

- The eigenspaces corresponding to different eigenvalues $\lambda_{1} \neq \lambda_{2}$ are orthogonal

Spectral Decomposition

Eigenspaces

- For each eigenvalue $\lambda \in \operatorname{spec}(A)$, the set

$$
\{|\psi\rangle \in \mathcal{H}: A|\psi\rangle=\lambda|\psi\rangle\}
$$

is a closed subspace of \mathcal{H} and called the eigenspace of A corresponding to λ.

- The eigenspaces corresponding to different eigenvalues $\lambda_{1} \neq \lambda_{2}$ are orthogonal

Spectral Decomposition

- All eigenvalues of an observable (i.e. a Hermitian operator) M are real numbers.

Eigenspaces

- For each eigenvalue $\lambda \in \operatorname{spec}(A)$, the set

$$
\{|\psi\rangle \in \mathcal{H}: A|\psi\rangle=\lambda|\psi\rangle\}
$$

is a closed subspace of \mathcal{H} and called the eigenspace of A corresponding to λ.

- The eigenspaces corresponding to different eigenvalues $\lambda_{1} \neq \lambda_{2}$ are orthogonal

Spectral Decomposition

- All eigenvalues of an observable (i.e. a Hermitian operator) M are real numbers.

$$
M=\sum_{\lambda \in \operatorname{spec}(M)} \lambda P_{\lambda}
$$

where P_{λ} is the projector onto the eigenspace corresponding to λ.

Projective Measurements

- An observable M defines a measurement $\left\{P_{\lambda}: \lambda \in \operatorname{spec}(M)\right\}$, called a projective measurement.

Projective Measurements

- An observable M defines a measurement $\left\{P_{\lambda}: \lambda \in \operatorname{spec}(M)\right\}$, called a projective measurement.
- Upon measuring a system in state $|\psi\rangle$, the probability of getting result λ is

$$
p(\lambda)=\langle\psi| P_{\lambda}|\psi\rangle
$$

the state of the system after the measurement is

$$
\frac{P_{\lambda}|\psi\rangle}{\sqrt{p(\lambda)}}
$$

Projective Measurements

- An observable M defines a measurement $\left\{P_{\lambda}: \lambda \in \operatorname{spec}(M)\right\}$, called a projective measurement.
- Upon measuring a system in state $|\psi\rangle$, the probability of getting result λ is

$$
p(\lambda)=\langle\psi| P_{\lambda}|\psi\rangle
$$

the state of the system after the measurement is

$$
\frac{P_{\lambda}|\psi\rangle}{\sqrt{p(\lambda)}}
$$

- The expectation - average value - of M in state $|\psi\rangle$:

$$
\langle M\rangle_{\psi}=\sum_{\lambda \in \operatorname{spec}(M)} p(\lambda) \cdot \lambda=\langle\psi| M|\psi\rangle .
$$

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

Tensor Product of Hilbert Spaces

- Let \mathcal{H}_{i} be a Hilbert spaces with $\left\{\left|\psi_{i j_{i}}\right\rangle\right\}$ as an orthonormal basis for $i=1, \ldots, n$.

Tensor Product of Hilbert Spaces

- Let \mathcal{H}_{i} be a Hilbert spaces with $\left\{\left|\psi_{i j_{i}}\right\rangle\right\}$ as an orthonormal basis for $i=1, \ldots, n$.
- Write \mathcal{B} for the set of the elements in the form:

$$
\left|\psi_{1 j_{1}}, \ldots, \psi_{n j_{n}}\right\rangle=\left|\psi_{1 j_{1}} \otimes \ldots \otimes \psi_{n j_{n}}\right\rangle=\left|\psi_{1 j_{1}}\right\rangle \otimes \ldots \otimes\left|\psi_{n j_{n}}\right\rangle .
$$

Tensor Product of Hilbert Spaces

- Let \mathcal{H}_{i} be a Hilbert spaces with $\left\{\left|\psi_{i j_{i}}\right\rangle\right\}$ as an orthonormal basis for $i=1, \ldots, n$.
- Write \mathcal{B} for the set of the elements in the form:

$$
\left|\psi_{1_{1}}, \ldots, \psi_{n j_{n}}\right\rangle=\left|\psi_{1 j_{1}} \otimes \ldots \otimes \psi_{n j_{n}}\right\rangle=\left|\psi_{1 j_{1}}\right\rangle \otimes \ldots \otimes\left|\psi_{n j_{n}}\right\rangle .
$$

- Then the tensor product of $\mathcal{H}_{i}(i=1, \ldots, n)$ is the Hilbert space with \mathcal{B} as an orthonormal basis:

$$
\bigotimes_{i} \mathcal{H}_{i}=\operatorname{span} \mathcal{B} .
$$

Postulate of quantum mechanics 4

The state space of a composite quantum system is the tensor product of the state spaces of its components.

Postulate of quantum mechanics 4

The state space of a composite quantum system is the tensor product of the state spaces of its components.

Entanglement

- S is a quantum system composed by subsystems S_{1}, \ldots, S_{n} with state Hilbert space $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$.
- If for each $1 \leq i \leq n, S_{i}$ is in state $\left|\psi_{i}\right\rangle \in \mathcal{H}_{i}$, then S is in the product state $\left|\psi_{1}, \ldots, \psi_{n}\right\rangle$.

Postulate of quantum mechanics 4

The state space of a composite quantum system is the tensor product of the state spaces of its components.

Entanglement

- S is a quantum system composed by subsystems S_{1}, \ldots, S_{n} with state Hilbert space $\mathcal{H}_{1}, \ldots, \mathcal{H}_{n}$.
- If for each $1 \leq i \leq n, S_{i}$ is in state $\left|\psi_{i}\right\rangle \in \mathcal{H}_{i}$, then S is in the product state $\left|\psi_{1}, \ldots, \psi_{n}\right\rangle$.
- A state of the composite system is entangled if it is not a product of states of its component systems.

Example

- The state space of the system of n qubits:

$$
\mathcal{H}_{2}^{\otimes n}=\mathbb{C}^{2^{n}}=\left\{\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle: \alpha_{x} \in \mathbb{C} \text { for all } x \in\{0,1\}^{n}\right\} .
$$

Example

- The state space of the system of n qubits:

$$
\mathcal{H}_{2}^{\otimes n}=\mathbb{C}^{2^{n}}=\left\{\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle: \alpha_{x} \in \mathbb{C} \text { for all } x \in\{0,1\}^{n}\right\}
$$

- A two-qubit system can be in a product state like $|00\rangle,|1\rangle|+\rangle$.

Example

- The state space of the system of n qubits:

$$
\mathcal{H}_{2}^{\otimes n}=\mathbb{C}^{2^{n}}=\left\{\sum_{x \in\{0,1\}^{n}} \alpha_{x}|x\rangle: \alpha_{x} \in \mathbb{C} \text { for all } x \in\{0,1\}^{n}\right\} .
$$

- A two-qubit system can be in a product state like $|00\rangle,|1\rangle|+\rangle$.
- It can also be in an entangled state like the Bell states or the EPR (Einstein-Podolsky-Rosen) pairs:

$$
\begin{aligned}
& \left|\beta_{00}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle), \quad\left|\beta_{01}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle+|10\rangle), \\
& \left|\beta_{10}\right\rangle=\frac{1}{\sqrt{2}}(|00\rangle-|11\rangle), \quad\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) .
\end{aligned}
$$

Tensor Product of Operators

- Let $A_{i} \in \mathcal{L}\left(\mathcal{H}_{i}\right)$ for $i=1, \ldots, n$.

Tensor Product of Operators

- Let $A_{i} \in \mathcal{L}\left(\mathcal{H}_{i}\right)$ for $i=1, \ldots, n$.
- Their tensor product $\otimes_{i=1}^{n} A_{i}=A_{1} \otimes \ldots \otimes A_{n} \in \mathcal{L}\left(\otimes_{i=1}^{n} \mathcal{H}_{i}\right)$:

$$
\left(A_{1} \otimes \ldots \otimes A_{n}\right)\left|\varphi_{1}, \ldots, \varphi_{n}\right\rangle=A_{1}\left|\varphi_{1}\right\rangle \otimes \ldots \otimes A_{n}\left|\varphi_{n}\right\rangle
$$

Controlled-NOT

Tensor Product of Operators

- Let $A_{i} \in \mathcal{L}\left(\mathcal{H}_{i}\right)$ for $i=1, \ldots, n$.
- Their tensor product $\bigotimes_{i=1}^{n} A_{i}=A_{1} \otimes \ldots \otimes A_{n} \in \mathcal{L}\left(\otimes_{i=1}^{n} \mathcal{H}_{i}\right)$:

$$
\left(A_{1} \otimes \ldots \otimes A_{n}\right)\left|\varphi_{1}, \ldots, \varphi_{n}\right\rangle=A_{1}\left|\varphi_{1}\right\rangle \otimes \ldots \otimes A_{n}\left|\varphi_{n}\right\rangle
$$

Controlled-NOT

- The controlled-NOT or CNOT operator C in $\mathcal{H}_{2}^{\otimes 2}=\mathbb{C}^{4}$:

$$
\begin{gathered}
C|00\rangle=|00\rangle, \quad C|01\rangle=|01\rangle, \quad C|10\rangle=|11\rangle, \quad C|11\rangle=|10\rangle \\
C=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

Tensor Product of Operators

- Let $A_{i} \in \mathcal{L}\left(\mathcal{H}_{i}\right)$ for $i=1, \ldots, n$.
- Their tensor product $\otimes_{i=1}^{n} A_{i}=A_{1} \otimes \ldots \otimes A_{n} \in \mathcal{L}\left(\otimes_{i=1}^{n} \mathcal{H}_{i}\right)$:

$$
\left(A_{1} \otimes \ldots \otimes A_{n}\right)\left|\varphi_{1}, \ldots, \varphi_{n}\right\rangle=A_{1}\left|\varphi_{1}\right\rangle \otimes \ldots \otimes A_{n}\left|\varphi_{n}\right\rangle
$$

Controlled-NOT

- The controlled-NOT or CNOT operator C in $\mathcal{H}_{2}^{\otimes 2}=\mathbb{C}^{4}$:

$$
\begin{gathered}
C|00\rangle=|00\rangle, \quad C|01\rangle=|01\rangle, \quad C|10\rangle=|11\rangle, \quad C|11\rangle=|10\rangle \\
C=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right) .
\end{gathered}
$$

- Transform product states into entangled states:

$$
C|+\rangle|0\rangle=\beta_{00}, \quad C|+\rangle|1\rangle=\beta_{01}, \quad C|-\rangle|0\rangle=\beta_{10}, \quad C|-\rangle|1\rangle=\beta_{11} .
$$

Implementing a General Measurement by a Projective Measurement

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in Hilbert space \mathcal{H}.

Implementing a General Measurement by a Projective Measurement

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in Hilbert space \mathcal{H}.
- Introduce a new Hilbert space $\mathcal{H}_{M}=\operatorname{span}\{|m\rangle\}$ used to record the possible outcomes of M.

Implementing a General Measurement by a Projective Measurement

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in Hilbert space \mathcal{H}.
- Introduce a new Hilbert space $\mathcal{H}_{M}=\operatorname{span}\{|m\rangle\}$ used to record the possible outcomes of M.
- Choose a fixed state $|0\rangle \in \mathcal{H}_{M}$. Define unitary operator in $\mathcal{H}_{M} \otimes \mathcal{H}:$

$$
U_{M}(|0\rangle|\psi\rangle)=\sum_{m}|m\rangle M_{m}|\psi\rangle
$$

Implementing a General Measurement by a Projective Measurement

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in Hilbert space \mathcal{H}.
- Introduce a new Hilbert space $\mathcal{H}_{M}=\operatorname{span}\{|m\rangle\}$ used to record the possible outcomes of M.
- Choose a fixed state $|0\rangle \in \mathcal{H}_{M}$. Define unitary operator in $\mathcal{H}_{M} \otimes \mathcal{H}:$

$$
U_{M}(|0\rangle|\psi\rangle)=\sum_{m}|m\rangle M_{m}|\psi\rangle
$$

- Define a projective measurement $\bar{M}=\left\{\bar{M}_{m}\right\}$ in $\mathcal{H}_{M} \otimes \mathcal{H}$ with $\bar{M}_{m}=|m\rangle\langle m| \otimes I_{\mathcal{H}}$ for every m.

Implementing a General Measurement by a Projective Measurement (Continued)

- Then M is realised by the projective measurement \bar{M} together with the unitary operator U_{M}.

Implementing a General Measurement by a Projective Measurement (Continued)

- Then M is realised by the projective measurement \bar{M} together with the unitary operator U_{M}.
- For any pure state $|\psi\rangle \in \mathcal{H}$,

Implementing a General Measurement by a Projective Measurement (Continued)

- Then M is realised by the projective measurement \bar{M} together with the unitary operator U_{M}.
- For any pure state $|\psi\rangle \in \mathcal{H}$,
- When we perform measurement M on $|\psi\rangle$, the probability of outcome m is denoted $p_{M}(m)$, the post-measurement state corresponding to m is $\left|\psi_{m}\right\rangle$.

Implementing a General Measurement by a Projective Measurement (Continued)

- Then M is realised by the projective measurement \bar{M} together with the unitary operator U_{M}.
- For any pure state $|\psi\rangle \in \mathcal{H}$,
- When we perform measurement M on $|\psi\rangle$, the probability of outcome m is denoted $p_{M}(m)$, the post-measurement state corresponding to m is $\left|\psi_{m}\right\rangle$.
- When we perform measurement \bar{M} on $|\bar{\psi}\rangle=U_{M}(|0\rangle|\psi\rangle)$, the probability of outcome m is denoted $p_{\bar{M}}(m)$, the post-measurement state corresponding to m is $\left|\bar{\psi}_{m}\right\rangle$.

Implementing a General Measurement by a Projective Measurement (Continued)

- Then M is realised by the projective measurement \bar{M} together with the unitary operator U_{M}.
- For any pure state $|\psi\rangle \in \mathcal{H}$,
- When we perform measurement M on $|\psi\rangle$, the probability of outcome m is denoted $p_{M}(m)$, the post-measurement state corresponding to m is $\left|\psi_{m}\right\rangle$.
- When we perform measurement \bar{M} on $|\bar{\psi}\rangle=U_{M}(|0\rangle|\psi\rangle)$, the probability of outcome m is denoted $p_{\bar{M}}(m)$, the post-measurement state corresponding to m is $\left|\bar{\psi}_{m}\right\rangle$.
- Then for each m, we have:

$$
\begin{aligned}
& p_{\bar{M}}(m)=p_{M}(m) \\
& \left|\bar{\psi}_{m}\right\rangle=|m\rangle\left|\psi_{m}\right\rangle
\end{aligned}
$$

Outline

Hilbert Spaces
Linear Operators
Quantum Measurements
Tensor Products

Density Operators

Quantum Operations

Ensembles

- The state of a quantum system is not completely known: it is in one of a number of pure states $\left|\psi_{i}\right\rangle$, with respective probabilities p_{i}, where $\left|\psi_{i}\right\rangle \in \mathcal{H}, p_{i} \geq 0$ for each $i, \sum_{i} p_{i}=1$.

Ensembles

- The state of a quantum system is not completely known: it is in one of a number of pure states $\left|\psi_{i}\right\rangle$, with respective probabilities p_{i}, where $\left|\psi_{i}\right\rangle \in \mathcal{H}, p_{i} \geq 0$ for each $i, \sum_{i} p_{i}=1$.
- We call $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$ an ensemble of pure states or a mixed state.

Ensembles

- The state of a quantum system is not completely known: it is in one of a number of pure states $\left|\psi_{i}\right\rangle$, with respective probabilities p_{i}, where $\left|\psi_{i}\right\rangle \in \mathcal{H}, p_{i} \geq 0$ for each $i, \sum_{i} p_{i}=1$.
- We call $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$ an ensemble of pure states or a mixed state.
- The density operator:

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right|
$$

Ensembles

- The state of a quantum system is not completely known: it is in one of a number of pure states $\left|\psi_{i}\right\rangle$, with respective probabilities p_{i}, where $\left|\psi_{i}\right\rangle \in \mathcal{H}, p_{i} \geq 0$ for each $i, \sum_{i} p_{i}=1$.
- We call $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$ an ensemble of pure states or a mixed state.
- The density operator:

$$
\rho=\sum_{i} p_{i}\left|\psi_{i}\right\rangle\left\langle\psi_{i}\right| .
$$

- A pure state $|\psi\rangle$ may be seen as a special mixed state $\{(|\psi\rangle, 1)\}$, its density operator is $\rho=|\psi\rangle\langle\psi|$.

Density Operators

- The trace $\operatorname{tr}(A)$ of operator $A \in \mathcal{L}(\mathcal{H})$:

$$
\operatorname{tr}(A)=\sum_{i}\left\langle\psi_{i}\right| A\left|\psi_{i}\right\rangle
$$

where $\left\{\left|\psi_{i}\right\rangle\right\}$ is an orthonormal basis of \mathcal{H}.

Density Operators

- The trace $\operatorname{tr}(A)$ of operator $A \in \mathcal{L}(\mathcal{H})$:

$$
\operatorname{tr}(A)=\sum_{i}\left\langle\psi_{i}\right| A\left|\psi_{i}\right\rangle
$$

where $\left\{\left|\psi_{i}\right\rangle\right\}$ is an orthonormal basis of \mathcal{H}.

- A density operator ρ is a positive operator with $\operatorname{tr}(\rho)=1$.

Density Operators

- The trace $\operatorname{tr}(A)$ of operator $A \in \mathcal{L}(\mathcal{H})$:

$$
\operatorname{tr}(A)=\sum_{i}\left\langle\psi_{i}\right| A\left|\psi_{i}\right\rangle
$$

where $\left\{\left|\psi_{i}\right\rangle\right\}$ is an orthonormal basis of \mathcal{H}.

- A density operator ρ is a positive operator with $\operatorname{tr}(\rho)=1$.
- The operator ρ defined by any ensemble $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$ is a density operator. Conversely, any density operator ρ is defined by an (but not necessarily unique) ensemble $\left\{\left(\left|\psi_{i}\right\rangle, p_{i}\right)\right\}$.

Postulates of Quantum Mechanics in the Language of Density Operators

- A closed quantum system from time t_{0} to t is described by unitary operator U depending on t_{0} and t :

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

Postulates of Quantum Mechanics in the Language of Density Operators

- A closed quantum system from time t_{0} to t is described by unitary operator U depending on t_{0} and t :

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

- If the system is in mixed states ρ_{0}, ρ at times t_{0} and t, respectively, then:

$$
\rho=U \rho_{0} U^{\dagger} .
$$

Postulates of Quantum Mechanics in the Language of Density Operators

- A closed quantum system from time t_{0} to t is described by unitary operator U depending on t_{0} and t :

$$
|\psi\rangle=U\left|\psi_{0}\right\rangle
$$

- If the system is in mixed states ρ_{0}, ρ at times t_{0} and t, respectively, then:

$$
\rho=U \rho_{0} U^{\dagger}
$$

- If the state of a quantum system was ρ before measurement $\left\{M_{m}\right\}$ is performed, then the probability that result m occurs:

$$
p(m)=\operatorname{tr}\left(M_{m}^{\dagger} M_{m} \rho\right)
$$

the system after the measurement:

$$
\rho_{m}=\frac{M_{m} \rho M_{m}^{\dagger}}{p(m)}
$$

Reduced Density Operators

- We often need to characterise the state of a subsystem of a quantum system.

Reduced Density Operators

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.

Reduced Density Operators

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.
- Let S and T be quantum systems whose state Hilbert spaces are \mathcal{H}_{S} and \mathcal{H}_{T}, respectively.

Reduced Density Operators

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.
- Let S and T be quantum systems whose state Hilbert spaces are \mathcal{H}_{S} and \mathcal{H}_{T}, respectively.
- The partial trace over system T :

$$
\begin{gathered}
\operatorname{tr}_{T}: \mathcal{L}\left(\mathcal{H}_{S} \otimes \mathcal{H}_{T}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{S}\right) \\
\operatorname{tr}_{\mathcal{T}}(|\varphi\rangle\langle\psi| \otimes|\theta\rangle\langle\zeta|)=\langle\zeta \mid \theta\rangle \cdot|\varphi\rangle\langle\psi|
\end{gathered}
$$

Reduced Density Operators

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.
- Let S and T be quantum systems whose state Hilbert spaces are \mathcal{H}_{S} and \mathcal{H}_{T}, respectively.
- The partial trace over system T :

$$
\begin{gathered}
\operatorname{tr}_{T}: \mathcal{L}\left(\mathcal{H}_{S} \otimes \mathcal{H}_{T}\right) \rightarrow \mathcal{L}\left(\mathcal{H}_{S}\right) \\
\operatorname{tr}_{\mathcal{T}}(|\varphi\rangle\langle\psi| \otimes|\theta\rangle\langle\zeta|)=\langle\zeta \mid \theta\rangle \cdot|\varphi\rangle\langle\psi|
\end{gathered}
$$

- Let ρ be a density operator in $\mathcal{H}_{S} \otimes \mathcal{H}_{T}$. Its reduced density operator for system S :

$$
\rho_{S}=\operatorname{tr}_{T}(\rho)
$$

Outline

Hilbert Spaces
Linear Operators
Quantum Measurements
Tensor Products
Density Operators

Quantum Operations

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside, we need a more general notion of quantum operation.

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside, we need a more general notion of quantum operation.
- A linear operator in vector space $\mathcal{L}(\mathcal{H})$ is called a super-operator in \mathcal{H}.

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside, we need a more general notion of quantum operation.
- A linear operator in vector space $\mathcal{L}(\mathcal{H})$ is called a super-operator in \mathcal{H}.
- Let \mathcal{H} and \mathcal{K} be Hilbert spaces. For any super-operator \mathcal{E} in \mathcal{H} and super-operator \mathcal{F} in \mathcal{K}, their tensor product $\mathcal{E} \otimes \mathcal{F}$ is the super-operator in $\mathcal{H} \otimes \mathcal{K}$: for each $C \in \mathcal{L}(\mathcal{H} \otimes \mathcal{K})$,

$$
(\mathcal{E} \otimes \mathcal{F})(C)=\sum_{k} \alpha_{k}\left(\mathcal{E}\left(A_{k}\right) \otimes \mathcal{F}\left(B_{k}\right)\right)
$$

where $C=\sum_{k} \alpha_{k}\left(A_{k} \otimes B_{k}\right), A_{k} \in \mathcal{L}(\mathcal{H}), B_{k} \in \mathcal{L}(\mathcal{K})$ for all k.

Quantum Operations

- Let the states of a system at times t_{0} and t are ρ and ρ^{\prime}, respectively. Then they must be related to each other by a super-operator \mathcal{E} depending only on the times t_{0} and t :

$$
\rho=\mathcal{E}\left(\rho_{0}\right)
$$

Quantum Operations

- Let the states of a system at times t_{0} and t are ρ and ρ^{\prime}, respectively. Then they must be related to each other by a super-operator \mathcal{E} depending only on the times t_{0} and t :

$$
\rho=\mathcal{E}\left(\rho_{0}\right) .
$$

- A quantum operation in a Hilbert space \mathcal{H} is a super-operator in \mathcal{H} satisfying:

Quantum Operations

- Let the states of a system at times t_{0} and t are ρ and ρ^{\prime}, respectively. Then they must be related to each other by a super-operator \mathcal{E} depending only on the times t_{0} and t :

$$
\rho=\mathcal{E}\left(\rho_{0}\right) .
$$

- A quantum operation in a Hilbert space \mathcal{H} is a super-operator in \mathcal{H} satisfying:

1. $\operatorname{tr}[\mathcal{E}(\rho)] \leq \operatorname{tr}(\rho)=1$ for each density operator ρ in \mathcal{H};

Quantum Operations

- Let the states of a system at times t_{0} and t are ρ and ρ^{\prime}, respectively. Then they must be related to each other by a super-operator \mathcal{E} depending only on the times t_{0} and t :

$$
\rho=\mathcal{E}\left(\rho_{0}\right) .
$$

- A quantum operation in a Hilbert space \mathcal{H} is a super-operator in \mathcal{H} satisfying:

1. $\operatorname{tr}[\mathcal{E}(\rho)] \leq \operatorname{tr}(\rho)=1$ for each density operator ρ in \mathcal{H};
2. (Complete positivity) For any extra Hilbert space $\mathcal{H}_{R},\left(\mathcal{I}_{R} \otimes \mathcal{E}\right)(A)$ is positive provided A is a positive operator in $\mathcal{H}_{R} \otimes \mathcal{H}$, where \mathcal{I}_{R} is the identity operator in $\mathcal{L}\left(\mathcal{H}_{R}\right)$.

Examples

- Let U be a unitary transformation in a Hilbert space \mathcal{H}. Define:

$$
\mathcal{E}(\rho)=U \rho U^{\dagger}
$$

for every density operator ρ. Then \mathcal{E} is a quantum operation.

Examples

- Let U be a unitary transformation in a Hilbert space \mathcal{H}. Define:

$$
\mathcal{E}(\rho)=U \rho U^{\dagger}
$$

for every density operator ρ. Then \mathcal{E} is a quantum operation.

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in \mathcal{H}.

Examples

- Let U be a unitary transformation in a Hilbert space \mathcal{H}. Define:

$$
\mathcal{E}(\rho)=U \rho U^{+}
$$

for every density operator ρ. Then \mathcal{E} is a quantum operation.

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in \mathcal{H}.

1. For each m, if for any system state ρ before measurement, define

$$
\mathcal{E}_{m}(\rho)=p_{m} \rho_{m}=M_{m} \rho M^{\dagger}
$$

where p_{m} is the probability of outcome m and ρ_{m} is the post-measurement state corresponding to m, then \mathcal{E}_{m} is a quantum operation.

Examples

- Let U be a unitary transformation in a Hilbert space \mathcal{H}. Define:

$$
\mathcal{E}(\rho)=U \rho U^{+}
$$

for every density operator ρ. Then \mathcal{E} is a quantum operation.

- Let $M=\left\{M_{m}\right\}$ be a quantum measurement in \mathcal{H}.

1. For each m, if for any system state ρ before measurement, define

$$
\mathcal{E}_{m}(\rho)=p_{m} \rho_{m}=M_{m} \rho M^{\dagger}
$$

where p_{m} is the probability of outcome m and ρ_{m} is the post-measurement state corresponding to m, then \mathcal{E}_{m} is a quantum operation.
2. For any system state ρ before measurement, the post-measurement state is

$$
\mathcal{E}(\rho)=\sum_{m} \mathcal{E}_{m}(\rho)=\sum_{m} M_{m} \rho M_{m}^{\dagger}
$$

whenever the measurement outcomes are ignored. Then \mathcal{E} is a quantum operation.

Kraus Theorem
The following statements are equivalent:

1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H};

Kraus Theorem

The following statements are equivalent:

1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H};
2. (System-environment model) There are an environment system E with state Hilbert space \mathcal{H}_{E}, and a unitary transformation U in $\mathcal{H}_{E} \otimes \mathcal{H}$ and a projector P onto some closed subspace of $\mathcal{H}_{E} \otimes \mathcal{H}$ such that

$$
\mathcal{E}(\rho)=\operatorname{tr}_{E}\left[P U\left(\left|e_{0}\right\rangle\left\langle e_{0}\right| \otimes \rho\right) U^{\dagger} P\right]
$$

for all density operator ρ in \mathcal{H}, where $\left|e_{0}\right\rangle$ is a fixed state in \mathcal{H}_{E};

Kraus Theorem

The following statements are equivalent:

1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H};
2. (System-environment model) There are an environment system E with state Hilbert space \mathcal{H}_{E}, and a unitary transformation U in $\mathcal{H}_{E} \otimes \mathcal{H}$ and a projector P onto some closed subspace of $\mathcal{H}_{E} \otimes \mathcal{H}$ such that

$$
\mathcal{E}(\rho)=\operatorname{tr}_{E}\left[P U\left(\left|e_{0}\right\rangle\left\langle e_{0}\right| \otimes \rho\right) U^{+} P\right]
$$

for all density operator ρ in \mathcal{H}, where $\left|e_{0}\right\rangle$ is a fixed state in \mathcal{H}_{E};
3. (Kraus operator-sum representation) There exists a finite or countably infinite set of operators $\left\{E_{i}\right\}$ in \mathcal{H} such that $\sum_{i} E_{i}^{\dagger} E_{i} \sqsubseteq I$ and

$$
\mathcal{E}(\rho)=\sum_{i} E_{i} \rho E_{i}^{\dagger}
$$

for all density operators ρ in \mathcal{H}. We write: $\mathcal{E}=\sum_{i} E_{i} \circ E_{i}^{\dagger}$.

