
Foundations of Quantum Programming

Lecture 2: Basics of Quantum Mechanics

Mingsheng Ying

University of Technology Sydney, Australia



Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations



Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations



Vector spaces
A (complex) vector space is a nonempty setH with two operations:
I vector addition + : H×H → H

I scalar multiplication · : C×H → H

satisfying the conditions:

1. + is commutative: |ϕ〉+ |ψ〉 = |ψ〉+ |ϕ〉.
2. + is associative: |ϕ〉+ (|ψ〉+ |χ〉) = (|ϕ〉+ |ψ〉) + |χ〉.
3. + has the zero element 0, called the zero vector, such that

0 + |ϕ〉 = |ϕ〉.
4. each |ϕ〉 ∈ H has its negative vector −|ϕ〉 such that
|ϕ〉+ (−|ϕ〉) = 0.

5. 1|ϕ〉 = |ϕ〉.
6. λ(µ|ϕ〉) = λµ|ϕ〉.
7. (λ + µ)|ϕ〉 = λ|ϕ〉+ µ|ϕ〉.
8. λ(|ϕ〉+ |ψ〉) = λ|ϕ〉+ λ|ψ〉.
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Inner product
An inner product space is a vector spaceH equipped with an inner
product:

〈·|·〉 : H×H → C

satisfying the properties:
1. 〈ϕ|ϕ〉 ≥ 0 with equality if and only if |ϕ〉 = 0;

2. 〈ϕ|ψ〉 = 〈ψ|ϕ〉∗;
3. 〈ϕ|λ1ψ1 + λ2ψ2〉 = λ1〈ϕ|ψ1〉+ λ2〈ϕ|ψ2〉.

I If 〈ϕ|ψ〉 = 0, then |ϕ〉 and |ψ〉 are orthogonal, |ϕ〉 ⊥ |ψ〉.
I The length of a vector |ψ〉 ∈ H is

||ψ|| =
√
〈ψ|ψ〉.

I A vector |ψ〉 is a unit vector if ||ψ|| = 1.
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Cauchy-limit
Let {|ψn〉} be a sequence of vectors inH and |ψ〉 ∈ H.

1. If for any ε > 0, there exists a positive integer N such that
||ψm − ψn|| < ε for all m, n ≥ N, then {|ψn〉} is a Cauchy
sequence.

2. If for any ε > 0, there exists a positive integer N such that
||ψn − ψ|| < ε for all n ≥ N, then |ψ〉 is a limit of {|ψn〉},
|ψ〉 = limn→∞ |ψn〉.

Hilbert spaces
A Hilbert space is a complete inner product space; that is, an inner
product space in which each Cauchy sequence of vectors has a limit.
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Bases
A finite or countably infinite family {|ψi〉} of unit vectors is an
orthonormal basis ofH if

1. {|ψi〉} are pairwise orthogonal: |ψi〉 ⊥ |ψj〉 for any i, j with i , j;

2. {|ψi〉} span the whole spaceH: each |ψ〉 ∈ H can be written as a
linear combination:

|ψ〉 = ∑
i

λi|ψi〉.

I The numbers of vectors in any two orthonormal bases are the
same. It is called the dimension ofH, dimH.

I If an orthonormal basis contains infinitely many vectors, then
dimH = ∞.

I If dimH = n, fix an orthonormal basis {|ψ1〉, ..., |ψn〉}, then a
vector |ψ〉 = ∑n

i=1 λi|ψi〉 ∈ H is represented by the vector in Cn: λ1
...
λn
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Closed-subspace
LetH be a Hilbert space.

1. If X ⊆ H, and for any |ϕ〉, |ψ〉 ∈ X and λ ∈ C,

1.1 |ϕ〉+ |ψ〉 ∈ X;
1.2 λ|ϕ〉 ∈ X,

then X is called a subspace ofH.

2. For each X ⊆ H, its closure X is the set of limits limn→∞ |ψn〉 of
sequences {|ψn〉} in X.

3. A subspace X ofH is closed if X = X.

I For X ⊆ H, the space spanned by X:

spanX =

{
n

∑
i=1

λi|ψi〉 : n ≥ 0, λi ∈ C and |ψi〉 ∈ X (i = 1, ..., n)

}

I spanX is the closed subspace generated by X.
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2. The orthocomplement of a closed subspace X ofH is

X⊥ = {|ϕ〉 ∈ H : |ϕ〉 ⊥ X}.

3. The orthocomplement X⊥ is a closed subspace ofH, (X⊥)⊥ = X.
4. Let X, Y be two subspaces ofH. Then

X⊕ Y = {|ϕ〉+ |ψ〉 : |ϕ〉 ∈ X and |ψ〉 ∈ Y}.
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4. Let X, Y be two subspaces ofH. Then

X⊕ Y = {|ϕ〉+ |ψ〉 : |ϕ〉 ∈ X and |ψ〉 ∈ Y}.



Postulate of quantum mechanics 1

I The state space of a closed (i.e. an isolated) quantum system is
represented by a Hilbert space.

I A pure state of the system is described by a unit vector in its
state space.

I A linear combination |ψ〉 = ∑n
i=1 λi|ψi〉 of states |ψ1〉, ..., |ψn〉 is

often called their superposition
I Complex coefficients λi are called probability amplitudes.
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Example: Qubits

I 2-dimensional Hilbert space:

H2 = C2 = {α|0〉+ β|1〉 : α, β ∈ C}.

I Inner product:

(α|0〉+ β|1〉, α′|0〉+ β′|1〉) = α∗α′ + β∗β′.

I {|0〉, |1〉} is an orthonormal basis ofH2, the computational basis.
I A state of a qubit is described by a unit vector |ψ〉 = α|0〉+ β|1〉

with |α|2 + |β|2 = 1.
I

|+〉 = |0〉+ |1〉√
2

=
1√

2

(
1
1

)
, |−〉 = |0〉 − |1〉√

2
=

1√
2

(
1
−1

)



Example: Qubits

I 2-dimensional Hilbert space:

H2 = C2 = {α|0〉+ β|1〉 : α, β ∈ C}.

I Inner product:

(α|0〉+ β|1〉, α′|0〉+ β′|1〉) = α∗α′ + β∗β′.

I {|0〉, |1〉} is an orthonormal basis ofH2, the computational basis.
I A state of a qubit is described by a unit vector |ψ〉 = α|0〉+ β|1〉

with |α|2 + |β|2 = 1.
I

|+〉 = |0〉+ |1〉√
2

=
1√

2

(
1
1

)
, |−〉 = |0〉 − |1〉√

2
=

1√
2

(
1
−1

)



Example: Qubits

I 2-dimensional Hilbert space:

H2 = C2 = {α|0〉+ β|1〉 : α, β ∈ C}.

I Inner product:

(α|0〉+ β|1〉, α′|0〉+ β′|1〉) = α∗α′ + β∗β′.

I {|0〉, |1〉} is an orthonormal basis ofH2, the computational basis.

I A state of a qubit is described by a unit vector |ψ〉 = α|0〉+ β|1〉
with |α|2 + |β|2 = 1.

I

|+〉 = |0〉+ |1〉√
2

=
1√

2

(
1
1

)
, |−〉 = |0〉 − |1〉√

2
=

1√
2

(
1
−1

)



Example: Qubits

I 2-dimensional Hilbert space:

H2 = C2 = {α|0〉+ β|1〉 : α, β ∈ C}.

I Inner product:

(α|0〉+ β|1〉, α′|0〉+ β′|1〉) = α∗α′ + β∗β′.

I {|0〉, |1〉} is an orthonormal basis ofH2, the computational basis.
I A state of a qubit is described by a unit vector |ψ〉 = α|0〉+ β|1〉

with |α|2 + |β|2 = 1.

I

|+〉 = |0〉+ |1〉√
2

=
1√

2

(
1
1

)
, |−〉 = |0〉 − |1〉√

2
=

1√
2

(
1
−1

)



Example: Qubits

I 2-dimensional Hilbert space:

H2 = C2 = {α|0〉+ β|1〉 : α, β ∈ C}.

I Inner product:

(α|0〉+ β|1〉, α′|0〉+ β′|1〉) = α∗α′ + β∗β′.

I {|0〉, |1〉} is an orthonormal basis ofH2, the computational basis.
I A state of a qubit is described by a unit vector |ψ〉 = α|0〉+ β|1〉

with |α|2 + |β|2 = 1.
I

|+〉 = |0〉+ |1〉√
2

=
1√

2

(
1
1

)
, |−〉 = |0〉 − |1〉√

2
=

1√
2

(
1
−1

)



Example: Square summable sequences

I The space of square summable sequences:

H∞ =

{
∞

∑
n=−∞

αn|n〉 : αn ∈ C for all n ∈ Z and
∞

∑
n=−∞

|αn|2 < ∞

}
.

I Inner product:(
∞

∑
n=−∞

αn|n〉,
∞

∑
n=−∞

α′|n〉
)

=
∞

∑
n=−∞

α∗nα′n.

I {|n〉 : n ∈ Z} is an orthonormal basis,H∞ is
infinite-dimensional.
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Linear Operators
LetH and K be Hilbert spaces. A mapping

A : H → K

is a linear operator if it satisfies the conditions:
1. A(|ϕ〉+ |ψ〉) = A|ϕ〉+ A|ψ〉;

2. A(λ|ψ〉) = λA|ψ〉.

Examples

I Identity operator maps each vector inH to itself, denoted IH.
I Zero operator maps every vector inH to the zero vector, denoted

0H.
I For vectors |ϕ〉, |ψ〉 ∈ H, their outer product is the operator
|ϕ〉〈ψ| inH:

(|ϕ〉〈ψ|)|χ〉 = 〈ψ|χ〉|ϕ〉.
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Projection

I Let X be a closed subspace ofH and |ψ〉 ∈ H. Then there exist
uniquely |ψ0〉 ∈ X and |ψ1〉 ∈ X⊥ such that

|ψ〉 = |ψ0〉+ |ψ1〉.

I Vector |ψ0〉 is called the projection of |ψ〉 onto X, |ψ0〉 = PX|ψ〉.
I For closed subspace X ofH, the operator

PX : H → X, |ψ〉 7→ PX|ψ〉

is the projector onto X.
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Bounded operators

I An operator A is bounded if there is a constant C ≥ 0 such that

‖A|ψ〉‖ ≤ C · ‖ψ‖

for all |ψ〉 ∈ H.

I The norm of A is

‖A‖ = inf{C ≥ 0 : ||A|ψ〉|| ≤ C · ||ψ|| for all ψ ∈ H}.

I L(H) stands for the set of bounded operators inH.
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Operations of operators

(A + B)|ψ〉 = A|ψ〉+ B|ψ〉,
(λA)|ψ〉 = λ(A|ψ〉),
(BA)|ψ〉 = B(A|ψ〉).

Positive operators
An operator A ∈ L(H) is positive if for all states |ψ〉 ∈ H:

〈ψ|A|ψ〉 ≥ 0.



Operations of operators

(A + B)|ψ〉 = A|ψ〉+ B|ψ〉,
(λA)|ψ〉 = λ(A|ψ〉),
(BA)|ψ〉 = B(A|ψ〉).

Positive operators
An operator A ∈ L(H) is positive if for all states |ψ〉 ∈ H:

〈ψ|A|ψ〉 ≥ 0.



Löwner order

A v B if and only if B−A = B + (−1)A is positive.

Distance between operators

d(A, B) = sup
|ψ〉
||A|ψ〉 − B|ψ〉||
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Matrix Representation of Operators

I When dimH = n, fix orthonormal basis {|ψ1〉, ..., |ψn〉}, A can be
represented by the n× n complex matrix:

A =
(
aij
)

n×n =

 a11 ... a1n
...

an1 ... ann


where aij = 〈ψi|A|ψj〉 = (|ψi〉, A|ψj〉).

I If |ψ〉 = ∑n
i=1 αi|ψi〉, then

A|ψ〉 = A

 α1
...
αn

 =

 β1
...
βn


where βi = ∑n

j=1 aijαj.
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Unitary Transformations

I For any operator A ∈ L(H), there exists a unique operator A†

such that
(A|ϕ〉, |ψ〉) =

(
|ϕ〉, A†|ψ〉

)
.

I Operator A† is called the adjoint of A.
I If A =

(
aij
)

n×n, then

A† =
(
bij
)

n×n

with bij = a∗ji.

I An operator U ∈ L(H) is unitary if U†U = UU† = IH.
I All unitary transformations U preserve inner product:

(U|ϕ〉, U|ψ〉) = 〈ϕ|ψ〉.

I If dimH = n, then a unitary operator is represented by an n× n
unitary matrix U: U†U = In.
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Postulate of quantum mechanics 2

I Suppose that the states of a closed quantum system (i.e. a system
without interactions with its environment) at times t0 and t are
|ψ0〉 and |ψ〉, respectively.

I Then they are related to each other by a unitary operator U
which depends only on the times t0 and t,

|ψ〉 = U|ψ0〉.
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Example: Hadamard transformation

H =
1√

2

(
1 1
1 −1

)

H|0〉 = H
(

1
0

)
=

1√
2

(
1
1

)
= |+〉,

H|1〉 = H
(

0
1

)
=

1√
2

(
1
−1

)
= |−〉.



Example: Translation

I Let k be an integer. The k-translation operator Tk inH∞ is
defined by

Tk|n〉 = |n + k〉

for all n ∈ Z.

I TL = T−1 and TR = T1. They moves a particle on the line one
position to the left and to the right, respectively.
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Postulate of quantum mechanics 3

I A quantum measurement on a system with state Hilbert spaceH
is described by a collection {Mm} ⊆ L(H) of operators satisfying
the normalisation condition:

∑
m

M†
mMm = IH

I Mm are called measurement operators.
I The index m stands for the measurement outcomes that may

occur in the experiment.
I If the state of a quantum system is |ψ〉 immediately before the

measurement, then for each m,

I the probability that result m occurs in the measurement is

p(m) = ||Mm|ψ〉||2 = 〈ψ|M†
mMm|ψ〉 (Born rule)

I the state of the system after the measurement with outcome m is

|ψm〉 =
Mm|ψ〉√

p(m)
.

The normalisation condition implies that the probabilities for all
outcomes sum up to ∑m p(m) = 1.
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Example

I The measurement of a qubit in the computational basis:

M0 = |0〉〈0|, M1 = |1〉〈1|.

I If the qubit was in state |ψ〉 = α|0〉+ β|1〉 before the
measurement, then:

I the probability of obtaining outcome 0 is

p(0) = 〈ψ|M†
0M0|ψ〉 = 〈ψ|M0|ψ〉 = |α|2,

the state after the measurement is

M0|ψ〉√
p(0)

= |0〉.

I the probability of outcome 1 is p(1) = |β|2, the state after the
measurement is |1〉.
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Hermitian Operators, Observables

I An operator M ∈ L(H) is Hermitian if it is self-adjoint:

M† = M.

In physics, a Hermitian operator is called an observable.

I An operator P is a projector: P = PX for some closed subspace X
ofH, if and only if P is Hermitian and P2 = P.

Eigenvectors, Eigenvalues

I An eigenvector of an operator A is a non-zero vector |ψ〉 ∈ H such
that A|ψ〉 = λ|ψ〉 for some λ ∈ C.

I λ is called the eigenvalue of A corresponding to |ψ〉.
I The set of eigenvalues of A is called the (point) spectrum of A

and denoted spec(A).
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Eigenspaces

I For each eigenvalue λ ∈ spec(A), the set

{|ψ〉 ∈ H : A|ψ〉 = λ|ψ〉}

is a closed subspace ofH and called the eigenspace of A
corresponding to λ.

I The eigenspaces corresponding to different eigenvalues λ1 , λ2
are orthogonal

Spectral Decomposition

I All eigenvalues of an observable (i.e. a Hermitian operator) M
are real numbers.

I

M = ∑
λ∈spec(M)

λPλ

where Pλ is the projector onto the eigenspace corresponding to λ.
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Projective Measurements

I An observable M defines a measurement {Pλ : λ ∈ spec(M)},
called a projective measurement.

I Upon measuring a system in state |ψ〉, the probability of getting
result λ is

p(λ) = 〈ψ|Pλ|ψ〉

the state of the system after the measurement is

Pλ|ψ〉√
p(λ)

.

I The expectation — average value — of M in state |ψ〉:

〈M〉ψ = ∑
λ∈spec(M)

p(λ) · λ = 〈ψ|M|ψ〉.
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Tensor Product of Hilbert Spaces

I LetHi be a Hilbert spaces with {|ψiji〉} as an orthonormal basis
for i = 1, ..., n.

I Write B for the set of the elements in the form:

|ψ1j1 , ..., ψnjn〉 = |ψ1j1 ⊗ ...⊗ ψnjn〉 = |ψ1j1〉 ⊗ ...⊗ |ψnjn〉.

I Then the tensor product ofHi (i = 1, ..., n) is the Hilbert space
with B as an orthonormal basis:⊗

i

Hi = spanB.
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Postulate of quantum mechanics 4
The state space of a composite quantum system is the tensor product
of the state spaces of its components.

Entanglement

I S is a quantum system composed by subsystems S1, ..., Sn with
state Hilbert spaceH1, ...,Hn.

I If for each 1 ≤ i ≤ n, Si is in state |ψi〉 ∈ Hi, then S is in the
product state |ψ1, ..., ψn〉.

I A state of the composite system is entangled if it is not a product
of states of its component systems.
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Example

I The state space of the system of n qubits:

H⊗n
2 = C2n

=

 ∑
x∈{0,1}n

αx|x〉 : αx ∈ C for all x ∈ {0, 1}n

 .

I A two-qubit system can be in a product state like |00〉, |1〉|+〉.
I It can also be in an entangled state like the Bell states or the EPR

(Einstein-Podolsky-Rosen) pairs:

|β00〉 =
1√

2
(|00〉+ |11〉), |β01〉 =

1√
2
(|01〉+ |10〉),

|β10〉 =
1√

2
(|00〉 − |11〉), |β11〉 =

1√
2
(|01〉 − |10〉).
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Tensor Product of Operators

I Let Ai ∈ L(Hi) for i = 1, ..., n.

I Their tensor product
⊗n

i=1 Ai = A1 ⊗ ...⊗An ∈ L (
⊗n

i=1Hi):

(A1 ⊗ ...⊗An)|ϕ1, ..., ϕn〉 = A1|ϕ1〉 ⊗ ...⊗An|ϕn〉

Controlled-NOT

I The controlled-NOT or CNOT operator C inH⊗2
2 = C4:

C|00〉 = |00〉, C|01〉 = |01〉, C|10〉 = |11〉, C|11〉 = |10〉

C =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

I Transform product states into entangled states:

C|+〉|0〉 = β00, C|+〉|1〉 = β01, C|−〉|0〉 = β10, C|−〉|1〉 = β11.
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Implementing a General Measurement by a Projective
Measurement
I Let M = {Mm} be a quantum measurement in Hilbert spaceH.

I Introduce a new Hilbert spaceHM = span{|m〉} used to record
the possible outcomes of M.

I Choose a fixed state |0〉 ∈ HM. Define unitary operator in
HM ⊗H:

UM(|0〉|ψ〉) = ∑
m
|m〉Mm|ψ〉

I Define a projective measurement M = {Mm} inHM ⊗H with
Mm = |m〉〈m| ⊗ IH for every m.
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Implementing a General Measurement by a Projective
Measurement (Continued)
I Then M is realised by the projective measurement M together

with the unitary operator UM.

I For any pure state |ψ〉 ∈ H,

I When we perform measurement M on |ψ〉, the probability of
outcome m is denoted pM(m), the post-measurement state
corresponding to m is |ψm〉.

I When we perform measurement M on |ψ〉 = UM(|0〉|ψ〉), the
probability of outcome m is denoted pM(m), the post-measurement
state corresponding to m is |ψm〉.

I Then for each m, we have:

pM(m) = pM(m)

|ψm〉 = |m〉|ψm〉
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Ensembles
I The state of a quantum system is not completely known: it is in

one of a number of pure states |ψi〉, with respective probabilities
pi, where |ψi〉 ∈ H, pi ≥ 0 for each i, ∑i pi = 1.

I We call {(|ψi〉, pi)} an ensemble of pure states or a mixed state.
I The density operator:

ρ = ∑
i

pi|ψi〉〈ψi|.

I A pure state |ψ〉may be seen as a special mixed state {(|ψ〉, 1)},
its density operator is ρ = |ψ〉〈ψ|.
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Density Operators

I The trace tr(A) of operator A ∈ L(H):

tr(A) = ∑
i
〈ψi|A|ψi〉

where {|ψi〉} is an orthonormal basis ofH.

I A density operator ρ is a positive operator with tr(ρ) = 1.
I The operator ρ defined by any ensemble {(|ψi〉, pi)} is a density

operator. Conversely, any density operator ρ is defined by an
(but not necessarily unique) ensemble {(|ψi〉, pi)}.
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Postulates of Quantum Mechanics in the Language of
Density Operators

I A closed quantum system from time t0 to t is described by
unitary operator U depending on t0 and t:

|ψ〉 = U|ψ0〉

I If the system is in mixed states ρ0, ρ at times t0 and t,
respectively, then:

ρ = Uρ0U†.

I If the state of a quantum system was ρ before measurement
{Mm} is performed, then the probability that result m occurs:

p(m) = tr
(

M†
mMmρ

)
the system after the measurement:

ρm =
MmρM†

m
p(m)

.
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Reduced Density Operators

I We often need to characterise the state of a subsystem of a
quantum system.

I It is possible that a composite system is in a pure state, but some
of its subsystems must be seen as in a mixed state.

I Let S and T be quantum systems whose state Hilbert spaces are
HS andHT, respectively.

I The partial trace over system T:

trT : L(HS ⊗HT)→ L(HS)

trT (|ϕ〉〈ψ| ⊗ |θ〉〈ζ|) = 〈ζ|θ〉 · |ϕ〉〈ψ|
I Let ρ be a density operator inHS ⊗HT. Its reduced density

operator for system S:
ρS = trT(ρ).
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Super-Operators

I Unitary transformations are suited to describe the dynamics of
closed quantum systems.

I For open quantum systems that interact with the outside, we
need a more general notion of quantum operation.

I A linear operator in vector space L(H) is called a super-operator
inH.

I LetH and K be Hilbert spaces. For any super-operator E inH
and super-operator F in K, their tensor product E ⊗ F is the
super-operator inH⊗K: for each C ∈ L(H⊗K),

(E ⊗ F )(C) = ∑
k

αk(E(Ak)⊗F (Bk))

where C = ∑k αk(Ak ⊗ Bk), Ak ∈ L(H), Bk ∈ L(K) for all k.
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Quantum Operations

I Let the states of a system at times t0 and t are ρ and ρ′,
respectively. Then they must be related to each other by a
super-operator E depending only on the times t0 and t:

ρ = E(ρ0).

I A quantum operation in a Hilbert spaceH is a super-operator in
H satisfying:

1. tr[E(ρ)] ≤ tr(ρ) = 1 for each density operator ρ inH;
2. (Complete positivity) For any extra Hilbert spaceHR, (IR ⊗ E)(A)

is positive provided A is a positive operator inHR ⊗H, where IR
is the identity operator in L(HR).
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Examples

I Let U be a unitary transformation in a Hilbert spaceH. Define:

E(ρ) = UρU†

for every density operator ρ. Then E is a quantum operation.

I Let M = {Mm} be a quantum measurement inH.

1. For each m, if for any system state ρ before measurement, define

Em(ρ) = pmρm = MmρM†

where pm is the probability of outcome m and ρm is the
post-measurement state corresponding to m, then Em is a quantum
operation.

2. For any system state ρ before measurement, the post-measurement
state is

E(ρ) = ∑
m
Em(ρ) = ∑

m
MmρM†

m

whenever the measurement outcomes are ignored. Then E is a
quantum operation.
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Kraus Theorem
The following statements are equivalent:

1. E is a quantum operation in a Hilbert spaceH;

2. (System-environment model) There are an environment system E
with state Hilbert spaceHE, and a unitary transformation U in
HE ⊗H and a projector P onto some closed subspace ofHE ⊗H
such that

E(ρ) = trE

[
PU(|e0〉〈e0| ⊗ ρ)U†P

]
for all density operator ρ inH, where |e0〉 is a fixed state inHE;

3. (Kraus operator-sum representation) There exists a finite or
countably infinite set of operators {Ei} inH such that ∑i E†

i Ei v I
and

E(ρ) = ∑
i

EiρE†
i

for all density operators ρ inH. We write: E = ∑i Ei ◦ E†
i .
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