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Vector spaces
A (complex) vector space is a nonempty set H with two operations:
» vector addition +: H x H — H
» scalar multiplication - : C x H — H
satisfying the conditions:
1. + is commutative: |@) + |¢) = |¢) + |¢).
2. +is associative: | ) + ([9) + 1)) = (19 + [9)) + ).
3. + has the zero element 0, called the zero vector, such that
0+l¢) = [¢9)-
4. each |@) € H has its negative vector —|¢) such that
) + (=[¢9)) = 0.
llg) = |¢)-
Mulg)) = Aulg)-
(A+p)lp) = Ae) + plg).
AMle) +19)) = Mlg) +Alg).
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Inner product

An inner product space is a vector space H equipped with an inner

product:
(|Yy:HxH—=C

satisfying the properties:
1. (¢|9) > 0 with equality if and only if |¢) = 0;

2. (oly) = (yle)*;
3. (@M1 + A2ip2) = A (olr) + Aa(@lih2).

» If (p|) = 0, then |@) and |p) are orthogonal, |¢) L |¢).
» The length of a vector |) € H is

[l =/ {¢l).

» A vector |¢) is a unit vector if | ||| = 1.
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Cauchy-limit
Let {|¢n) } be a sequence of vectors in H and |¢) € H.

1. If for any € > 0, there exists a positive integer N such that
||m — Pul|| < € forallm,n > N, then {|ip,,)} is a Cauchy
sequence.

2. If for any € > 0, there exists a positive integer N such that
||gn — ¢|| < € foralln > N, then [) is a limit of {|¢y)},
) = limu o0 [1hn).

Hilbert spaces

A Hilbert space is a complete inner product space; that is, an inner
product space in which each Cauchy sequence of vectors has a limit.
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Bases
A finite or countably infinite family {|¢;) } of unit vectors is an
orthonormal basis of H if

L. {|;)} are pairwise orthogonal: |;) L [¢;) for any i,j with i # j;

2. {|¢;) } span the whole space H: each |¢) € H can be written as a

linear combination:
9) = L Ail)-
1

» The numbers of vectors in any two orthonormal bases are the
same. It is called the dimension of H, dim H.

» If an orthonormal basis contains infinitely many vectors, then
dimH = oc.

» If dim H = n, fix an orthonormal basis {|¢1), ..., |{n) }, then a
vector |p) = Y"1 Aj|ip;) € H is represented by the vector in C":

(7)
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Closed-subspace
Let H be a Hilbert space.
1. If X C H, and for any |¢), |¢) € Xand A € C,

L1 [g) +[¢) € X;
12 Algp) € X,

then X is called a subspace of H.

2. For each X C H, its closure X is the set of limits limy,_sc |45) Of
sequences {|y) } in X.

3. A subspace X of H is closed if X = X.

» For X C H, the space spanned by X:
n
spanX =< Y Ailgi) :n>0,A;, € Cand [¢;) € X (i=1,..,n)
i=1

» spanX is the closed subspace generated by X.
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. Forany X,Y C #H, X and Y are orthogonal, X L Y, if |¢) L |¢)
forall ) € Xand |¢) €Y.

. The orthocomplement of a closed subspace X of H is

Xt = {lg) € H:lg) L X).

. The orthocomplement X is a closed subspace of H, (X*)+ = X.
. Let X, Y be two subspaces of . Then

XeY={lg)+[¢):|p) € Xand [¢p) € Y}.
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Postulate of quantum mechanics 1

» The state space of a closed (i.e. an isolated) quantum system is
represented by a Hilbert space.

» A pure state of the system is described by a unit vector in its
state space.

» A linear combination |¢p) = Y!' ; A;|¢;) of states |1), ..., |Pn) is
often called their superposition

» Complex coefficients A; are called probability amplitudes.
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Example: Qubits

» 2-dimensional Hilbert space:

Hy = C? = {a]0) + B[1) : &, B € C}.

v

Inner product:

(«[0) + B[1),a’|0) + B'[1)) = a"a’ + B*P'.

v

{]0),|1)} is an orthonormal basis of #,, the computational basis.

A state of a qubit is described by a unit vector |¢) = «|0) + B|1)
with |a]? + |B]? = 1.

v

A yi) =Rt a ()
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» The space of square summable sequences:
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n=—o0 n=—oo
» Inner product:

( i ay|n), i zx’|n>> = i athal.

Nn—=——oo n——oo n—=——oo



Example: Square summable sequences
» The space of square summable sequences:
Hoo=14 Y, auln):ay €Cforalln € Zand ) lan|? < o0 .
n=—o0 n=—oo
» Inner product:
o [e0] o
Yo anln), Y An) | = ) ana.
n=—00 n=—oo n=—0o

» {|n) : n € Z} is an orthonormal basis, He is
infinite-dimensional.
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Linear Operators
Let H and K be Hilbert spaces. A mapping

A:H—-K

is a linear operator if it satisfies the conditions:

L A(lg) +[9) = Alg) + Alp);
2. A(My)) = AAly).

Examples

» Identity operator maps each vector in H to itself, denoted Iy .
» Zero operator maps every vector in H to the zero vector, denoted
» For vectors |¢), |i) € H, their outer product is the operator

) (] in H:
(o) {@hlx) = @l le)-
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Projection

» Let X be a closed subspace of H and |¢) € H. Then there exist
uniquely |¢o) € X and |¢;) € X* such that

1) = |%o) + |¢1)-

» Vector |iy) is called the projection of |) onto X, |¢pg) = Px|¢).
» For closed subspace X of H, the operator

Pxi H — X, |1/J> — Px|lIJ>

is the projector onto X.
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Bounded operators

» An operator A is bounded if there is a constant C > 0 such that

AT < C- [y

forall |p) € H.
» The norm of A is

[All = inf{C > 0: [|Alp)|| < C-[[y|| forall y € H}.

» L(H) stands for the set of bounded operators in H.
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Operations of operators

(A+B)lp) = Alp) + Bly),
(AA) ) = AAly)),
(BA)[¢) = B(A[y)).

Positive operators
An operator A € L(H) is positive if for all states |¢) € H:

($lAly) = 0.
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Lowner order

A C Bifand only if B— A = B+ (—1)A is positive.

Distance between operators

d(A,B) = S\E%D [|Alp) — Bl
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Matrix Representation of Operators

» When dim H = n, fix orthonormal basis {|y1), ..., |{») }, A can be
represented by the n x n complex matrix:

a1 ... A1p
A= (aij)nxn =
Ayl - Aun

where a;; = (Y;|Alp;) = (i), Al;))-
» If |) = Y1 ai];), then

&1 1
A|¢>:A( ) _ ( )
Kn ﬁn

where ; = 2;7:1 ajia;.



Unitary Transformations

> For any operator A € L£(H), there exists a unique operator A

such that
(Alg), 1) = (Ie)A"1)) -



Unitary Transformations

> For any operator A € L£(H), there exists a unique operator A

such that
(Alg), 1) = (Ie)A"1)) -

» Operator A" is called the adjoint of A.



Unitary Transformations

> For any operator A € L£(H), there exists a unique operator A

such that
(Alg), 1) = (Ie)A"1)) -

» Operator A" is called the adjoint of A.
> If A = (a;), . then

nx +
A" = (by) .,

with bl] = a;;



Unitary Transformations

> For any operator A € L£(H), there exists a unique operator A

such that
(Alg), 1) = (Ie)A"1)) -

» Operator A" is called the adjoint of A.
> If A = (a;), . then

nx +
A" = (by) .,

with bl] = a;;

> An operator U € L(H) is unitary if UTU = UUT = Iy.



Unitary Transformations

> For any operator A € L£(H), there exists a unique operator A

such that
(Alg), 1) = (Ie)A"1)) -

Operator A" is called the adjoint of A.
If A= (a) ., then

nx

v

v

1.
AT = (bi)
with bl] = a;;
> An operator U € L(H) is unitary if UTU = UUT = Iy.
All unitary transformations U preserve inner product:
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v



Unitary Transformations

> For any operator A € L£(H), there exists a unique operator A

such that
(Alg), 1) = (Ie)A"1)) -

» Operator A" is called the adjoint of A.

> If A = (a;), . then

1.
AT = (bi)
with bl] = a;;
> An operator U € L(H) is unitary if UTU = UUT = Iy.
» All unitary transformations U preserve inner product:

(Ulgp), Ulp)) = (ol¢)-

» If dim H = n, then a unitary operator is represented by an n x n
unitary matrix U: UTU = I,.
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Postulate of quantum mechanics 2

» Suppose that the states of a closed quantum system (i.e. a system
without interactions with its environment) at times fy and ¢ are
|o) and |p), respectively.

» Then they are related to each other by a unitary operator U
which depends only on the times ty and ¢,

) = Ulpo)-
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defined by
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Example: Translation

» Let k be an integer. The k-translation operator Ty in H is
defined by

Tyln) = [n+k)
foralln € Z.

» T = T_q and Tg = T1. They moves a particle on the line one
position to the left and to the right, respectively.
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Postulate of quantum mechanics 3

» A quantum measurement on a system with state Hilbert space H
is described by a collection {M,,} C L(H) of operators satisfying
the normalisation condition:

Y MMy = Iy
m

» M, are called measurement operators.

» The index m stands for the measurement outcomes that may
occur in the experiment.

» If the state of a quantum system is |¢) immediately before the
measurement, then for each m,

> the probability that result m occurs in the measurement is
2 +
p(m) = [[Mu[$)[” = (|MyMu|p)  (Born rule)
» the state of the system after the measurement with outcome m is

~ Maly)
) ==ty



Example

» The measurement of a qubit in the computational basis:

Mo = [0)(0, My = [1){1.



Example
» The measurement of a qubit in the computational basis:
Mo =10){0], M = [1)(1].

» If the qubit was in state |¢) = «|0) + B|1) before the
measurement, then:



Example
» The measurement of a qubit in the computational basis:
Mo =10){0], M = [1)(1].
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> the probability of obtaining outcome 0 is
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Example
» The measurement of a qubit in the computational basis:
Mo =10){0], M = [1)(1].

» If the qubit was in state |¢) = «|0) + B|1) before the
measurement, then:

> the probability of obtaining outcome 0 is

p(0) = (pIMIMo|p) = (p|Molyp) = |a]?,

the state after the measurement is

Mylyp)
p(0)

> the probability of outcome 1is p(1) = |B|?, the state after the
measurement is |1).

= |0).
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Hermitian Operators, Observables

» An operator M € L(#) is Hermitian if it is self-adjoint:
M' =M.

In physics, a Hermitian operator is called an observable.

» An operator P is a projector: P = Px for some closed subspace X
of H, if and only if P is Hermitian and P2 =p.

Eigenvectors, Eigenvalues

» An eigenvector of an operator A is a non-zero vector |i) € H such
that A|y) = A|y) for some A € C.

» Ais called the eigenvalue of A corresponding to |¢).

» The set of eigenvalues of A is called the (point) spectrum of A
and denoted spec(A).
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Eigenspaces

» For each eigenvalue A € spec(A), the set

{ly) e H:Aly) = Aly)}

is a closed subspace of H and called the eigenspace of A
corresponding to A.

» The eigenspaces corresponding to different eigenvalues A # A,
are orthogonal

Spectral Decomposition

» All eigenvalues of an observable (i.e. a Hermitian operator) M
are real numbers.

M= Y AP,
Aespec(M)

where P, is the projector onto the eigenspace corresponding to A.
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Projective Measurements

» An observable M defines a measurement {P), : A € spec(M)},
called a projective measurement.

» Upon measuring a system in state |¢), the probability of getting
result A is

p(A) = (¥[PAly)

the state of the system after the measurement is

Pyrly)

p(A)

» The expectation — average value — of M in state |¢):

Myyg= 3. pA)-A= (pM[yp).

Aespec(M)
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Tensor Product of Hilbert Spaces

> Let H; be a Hilbert spaces with {|¢;;,) } as an orthonormal basis
fori=1,..,n.
» Write B for the set of the elements in the form:

[W1j1s s Bjy) = [¥1j; @ e @ Pijy) = [P1,) @ oo @ [P,)-

» Then the tensor product of H; (i = 1,...,n) is the Hilbert space
with B as an orthonormal basis:

Q) Hi = spanB.
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Postulate of quantum mechanics 4

The state space of a composite quantum system is the tensor product
of the state spaces of its components.

Entanglement

» Sis a quantum system composed by subsystems Sy, ..., S, with
state Hilbert space Hj, ..., Hx.

» If foreach 1 <i <, S;isin state |;) € H;, then S is in the
product state |y, ..., Pn).

» A state of the composite system is entangled if it is not a product
of states of its component systems.
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Example

» The state space of the system of n qubits:

H" =¥ = { Z ax|x) :ay € Cforallx € {0,1}”}.

xe{0,1}"

» A two-qubit system can be in a product state like |00), |1)|+).

» It can also be in an entangled state like the Bell states or the EPR
(Einstein-Podolsky-Rosen) pairs:

(|00> +11)),  |Bor) = (|01> +10)),

|Boo) =

|B10) = (|00> 1)), [pu) = (|01> 10)).

%\ %\
S\ %\
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Tensor Product of Operators

» LetA; € L(H;) fori=1,..,n.
» Their tensor product 7 ; A; = A1 ® ... ® Ay € L(QF 1 Hi):

(A1 @ .. @ Ap)|@1, s @) = A1]@1) ® ... @ Ayl )

Controlled-NOT
» The controlled-NOT or CNOT operator C in H?z =C%

C|00) = |00), CJ|01) = |01), CJ|10) = |11), CJ11) = |10)
1 000
0100
C= 0 001
0 010

» Transform product states into entangled states:

C[+)10) = Boo, Cl+)I1) = Bor, C[—)[0) = Bro, C|—)|1) = Bu.
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Implementing a General Measurement by a Projective
Measurement
» Let M = {M,, } be a quantum measurement in Hilbert space H.

» Introduce a new Hilbert space Hy; = span{|m)} used to record
the possible outcomes of M.

» Choose a fixed state |0) € #Hy. Define unitary operator in

Hy @ H:
Un([0)|9)) Zlm M| tp)

> Define a projective measurement M = {M,, } in Hp1 ® H with
My, = |m)(m| @ Iy for every m.
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» Then M is realised by the projective measurement M together
with the unitary operator Upy.

» For any pure state |¢) € H,

» When we perform measurement M on |¢p), the probability of
outcome m is denoted py(m), the post-measurement state
corresponding to 11 is |Py,).
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Implementing a General Measurement by a Projective
Measurement (Continued)

» Then M is realised by the projective measurement M together
with the unitary operator Upy.
» For any pure state |¢) € H,

» When we perform measurement M on |¢p), the probability of
outcome m is denoted py(m), the post-measurement state
corresponding to 11 is |Py,).

> When we perform measurement M on [} = Uy(|0)|¢)), the
probability of outcome m is denoted py;(11), the post-measurement
state corresponding to m is |,,,).

» Then for each m, we have:
prr(m) = pm(m)
@) = [m) )
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Ensembles

» The state of a quantum system is not completely known: it is in
one of a number of pure states |1;), with respective probabilities
pi, where |¢;) € H, p; > 0 foreachi, Y ;p; = 1.

» We call {(|¢;),p;)} an ensemble of pure states or a mixed state.
» The density operator:

p= Zpi|1/’i><1/’i|-

» A pure state |¢) may be seen as a special mixed state {(|),1)},
its density operator is p = [) (¢].
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Density Operators

» The trace tr(A) of operator A € L(H):
r(A) = L (9ilAl)
1
where {|;) } is an orthonormal basis of .

» A density operator p is a positive operator with tr(p) = 1.

» The operator p defined by any ensemble {(|¢;),p;)} is a density
operator. Conversely, any density operator p is defined by an
(but not necessarily unique) ensemble {(|¢;),p;)}.
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Postulates of Quantum Mechanics in the Language of
Density Operators

» A closed quantum system from time t; to ¢ is described by
unitary operator U depending on ty and ¢:

[¥) = Ulyo)

» If the system is in mixed states py, p at times fy and ¢,
respectively, then:

p = UpoU".

» If the state of a quantum system was p before measurement
{M,, } is performed, then the probability that result m occurs:

p(m) = tr (M}, Mup)
the system after the measurement:

_ MupM;,

o= " p(m)
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Reduced Density Operators

» We often need to characterise the state of a subsystem of a
quantum system.

» It is possible that a composite system is in a pure state, but some
of its subsystems must be seen as in a mixed state.

» Let S and T be quantum systems whose state Hilbert spaces are
Hs and HrT, respectively.

» The partial trace over system T
trr: L(Hg @ Hr) — L(Hs)

trr(lo) (g @ [0)(Z]) = (Z16) - @) (¢]

» Let p be a density operator in Hg ® Hr. Its reduced density
operator for system S:

ps = trr(p).
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Super-Operators

» Unitary transformations are suited to describe the dynamics of
closed quantum systems.

» For open quantum systems that interact with the outside, we
need a more general notion of quantum operation.

» A linear operator in vector space £(7H) is called a super-operator
inH.
» Let H and K be Hilbert spaces. For any super-operator £ in H

and super-operator F in K, their tensor product £ ® F is the
super-operator in H ® K: foreach C € L(H ® K),

(E® F)(C Zak (Ax) ® F(By))

where C = Y ax(Ax @ By), Ay € L(H), By € L(K) for all k.
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Quantum Operations

> Let the states of a system at times ty and f are p and o,
respectively. Then they must be related to each other by a
super-operator £ depending only on the times ¢ty and #:

p = E(po)-

» A quantum operation in a Hilbert space # is a super-operator in
H satisfying:
1. tr[€(p)] < tr(p) = 1 for each density operator p in H;
2. (Complete positivity) For any extra Hilbert space Hg, (Zr ® £)(A)
is positive provided A is a positive operator in Hr @ H, where Zg
is the identity operator in £(HRg).
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Examples

» Let U be a unitary transformation in a Hilbert space H. Define:
£(p) = UpU"

for every density operator p. Then £ is a quantum operation.
» Let M = {M,,} be a quantum measurement in .
1. For each m, if for any system state p before measurement, define

En(p) = Pmpm = MupM'

where py, is the probability of outcome m and p,; is the
post-measurement state corresponding to 1, then &, is a quantum
operation.

2. For any system state p before measurement, the post-measurement

state is
E(p) = Y_Emlp) = Y_MupM;,
m m

whenever the measurement outcomes are ignored. Then £ is a
quantum operation.
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Kraus Theorem
The following statements are equivalent:

1. £ is a quantum operation in a Hilbert space H;

2. (System-environment model) There are an environment system E
with state Hilbert space HE, and a unitary transformation U in
‘He ® H and a projector P onto some closed subspace of Hp @ H
such that

E(p) = tri [PU(Jeo) (eol @ p)U'P|

for all density operator p in H, where |e) is a fixed state in Hp;

3. (Kraus operator-sum representation) There exists a finite or
countably infinite set of operators {E;} in H such that y, EJE; C I

and
E(p) = ZEiPE?
1

for all density operators p in H. We write: £ = Y, E; o E}.
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