Foundations of Quantum Programming

Lecture 2: Basics of Quantum Mechanics

Mingsheng Ying

University of Technology Sydney, Australia

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

A (complex) vector space is a nonempty set $\ensuremath{\mathcal{H}}$ with two operations:

• vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$

satisfying the conditions:

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle$.

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle.$
- 3. + has the zero element 0, called the zero vector, such that $0 + |\varphi\rangle = |\varphi\rangle$.

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle.$
- 3. + has the zero element 0, called the zero vector, such that $0 + |\varphi\rangle = |\varphi\rangle$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle + (-|\varphi\rangle) = 0.$

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle.$
- 3. + has the zero element 0, called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle.$

4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle + (-|\varphi\rangle) = 0.$

5. $1|\varphi\rangle = |\varphi\rangle$.

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle.$
- 3. + has the zero element 0, called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle + (-|\varphi\rangle) = 0.$
- 5. $1|\varphi\rangle = |\varphi\rangle$.
- 6. $\lambda(\mu|\varphi\rangle) = \lambda\mu|\varphi\rangle.$

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle.$
- 3. + has the zero element 0, called the zero vector, such that $0 + |\varphi\rangle = |\varphi\rangle$.

- 4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle + (-|\varphi\rangle) = 0.$
- 5. $1|\varphi\rangle = |\varphi\rangle$. 6. $\lambda(\mu|\varphi\rangle) = \lambda\mu|\varphi\rangle$. 7. $(\lambda + \mu)|\varphi\rangle = \lambda|\varphi\rangle + \mu|\varphi\rangle$.

A (complex) vector space is a nonempty set \mathcal{H} with two operations:

- vector addition $+ : \mathcal{H} \times \mathcal{H} \rightarrow \mathcal{H}$
- scalar multiplication $\cdot : \mathbb{C} \times \mathcal{H} \to \mathcal{H}$

satisfying the conditions:

- 1. + is commutative: $|\varphi\rangle + |\psi\rangle = |\psi\rangle + |\varphi\rangle$.
- 2. + is associative: $|\varphi\rangle + (|\psi\rangle + |\chi\rangle) = (|\varphi\rangle + |\psi\rangle) + |\chi\rangle$.
- 3. + has the zero element 0, called the zero vector, such that $0+|\varphi\rangle=|\varphi\rangle.$

- 4. each $|\varphi\rangle \in \mathcal{H}$ has its negative vector $-|\varphi\rangle$ such that $|\varphi\rangle + (-|\varphi\rangle) = 0.$
- 5. $1|\varphi\rangle = |\varphi\rangle$. 6. $\lambda(\mu|\varphi\rangle) = \lambda\mu|\varphi\rangle$. 7. $(\lambda + \mu)|\varphi\rangle = \lambda|\varphi\rangle + \mu|\varphi\rangle$. 8. $\lambda(|\varphi\rangle + |\psi\rangle) = \lambda|\varphi\rangle + \lambda|\psi\rangle$.

An inner product space is a vector space ${\mathcal H}$ equipped with an inner product:

 $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

satisfying the properties:

1. $\langle \varphi | \varphi \rangle \ge 0$ with equality if and only if $| \varphi \rangle = 0$;

An inner product space is a vector space ${\mathcal H}$ equipped with an inner product:

$$\langle \cdot | \cdot
angle : \mathcal{H} imes \mathcal{H}
ightarrow \mathbb{C}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

satisfying the properties:

- 1. $\langle \varphi | \varphi \rangle \ge 0$ with equality if and only if $| \varphi \rangle = 0$;
- 2. $\langle \varphi | \psi
 angle = \langle \psi | \varphi
 angle^*;$

An inner product space is a vector space \mathcal{H} equipped with an inner product:

 $\langle\cdot|\cdot\rangle:\mathcal{H}\times\mathcal{H}\rightarrow\mathbb{C}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

satisfying the properties:

- 1. $\langle \varphi | \varphi \rangle \ge 0$ with equality if and only if $| \varphi \rangle = 0$;
- 2. $\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^*$;
- 3. $\langle \varphi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle = \lambda_1 \langle \varphi | \psi_1 \rangle + \lambda_2 \langle \varphi | \psi_2 \rangle.$

An inner product space is a vector space \mathcal{H} equipped with an inner product:

 $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$

satisfying the properties:

1. $\langle \varphi | \varphi \rangle \geq 0$ with equality if and only if $| \varphi \rangle = 0$;

2.
$$\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^*$$
;

3.
$$\langle \varphi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle = \lambda_1 \langle \varphi | \psi_1 \rangle + \lambda_2 \langle \varphi | \psi_2 \rangle.$$

• If $\langle \varphi | \psi \rangle = 0$, then $| \varphi \rangle$ and $| \psi \rangle$ are orthogonal, $| \varphi \rangle \perp | \psi \rangle$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An inner product space is a vector space \mathcal{H} equipped with an inner product:

 $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$

satisfying the properties:

1. $\langle \phi | \phi \rangle \geq 0$ with equality if and only if $| \phi \rangle = 0$;

2.
$$\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^*$$
;

3.
$$\langle \varphi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle = \lambda_1 \langle \varphi | \psi_1 \rangle + \lambda_2 \langle \varphi | \psi_2 \rangle.$$

- If $\langle \varphi | \psi \rangle = 0$, then $| \varphi \rangle$ and $| \psi \rangle$ are orthogonal, $| \varphi \rangle \perp | \psi \rangle$.
- The length of a vector $|\psi\rangle \in \mathcal{H}$ is

$$||\psi|| = \sqrt{\langle \psi | \psi \rangle}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

An inner product space is a vector space \mathcal{H} equipped with an inner product:

 $\langle \cdot | \cdot \rangle : \mathcal{H} \times \mathcal{H} \to \mathbb{C}$

satisfying the properties:

1. $\langle \phi | \phi \rangle \geq 0$ with equality if and only if $| \phi \rangle = 0$;

2.
$$\langle \varphi | \psi \rangle = \langle \psi | \varphi \rangle^*$$
;

3.
$$\langle \varphi | \lambda_1 \psi_1 + \lambda_2 \psi_2 \rangle = \lambda_1 \langle \varphi | \psi_1 \rangle + \lambda_2 \langle \varphi | \psi_2 \rangle.$$

- If $\langle \varphi | \psi \rangle = 0$, then $| \varphi \rangle$ and $| \psi \rangle$ are orthogonal, $| \varphi \rangle \perp | \psi \rangle$.
- The length of a vector $|\psi\rangle \in \mathcal{H}$ is

$$||\psi|| = \sqrt{\langle \psi | \psi \rangle}.$$

• A vector $|\psi\rangle$ is a unit vector if $||\psi|| = 1$.

Cauchy-limit

Let $\{|\psi_n\rangle\}$ be a sequence of vectors in \mathcal{H} and $|\psi\rangle \in \mathcal{H}$.

1. If for any $\epsilon > 0$, there exists a positive integer *N* such that $||\psi_m - \psi_n|| < \epsilon$ for all $m, n \ge N$, then $\{|\psi_n\rangle\}$ is a Cauchy sequence.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Cauchy-limit

Let $\{|\psi_n\rangle\}$ be a sequence of vectors in \mathcal{H} and $|\psi\rangle \in \mathcal{H}$.

- 1. If for any $\epsilon > 0$, there exists a positive integer *N* such that $||\psi_m \psi_n|| < \epsilon$ for all $m, n \ge N$, then $\{|\psi_n\rangle\}$ is a Cauchy sequence.
- 2. If for any $\epsilon > 0$, there exists a positive integer *N* such that $||\psi_n \psi|| < \epsilon$ for all $n \ge N$, then $|\psi\rangle$ is a limit of $\{|\psi_n\rangle\}$, $|\psi\rangle = \lim_{n\to\infty} |\psi_n\rangle$.

Hilbert spaces

A Hilbert space is a complete inner product space; that is, an inner product space in which each Cauchy sequence of vectors has a limit.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A finite or countably infinite family $\{|\psi_i\rangle\}$ of unit vectors is an orthonormal basis of $\mathcal H$ if

1. $\{|\psi_i\rangle\}$ are pairwise orthogonal: $|\psi_i\rangle \perp |\psi_j\rangle$ for any *i*, *j* with $i \neq j$;

A finite or countably infinite family $\{|\psi_i\rangle\}$ of unit vectors is an orthonormal basis of $\mathcal H$ if

- 1. $\{|\psi_i\rangle\}$ are pairwise orthogonal: $|\psi_i\rangle \perp |\psi_j\rangle$ for any *i*, *j* with $i \neq j$;
- 2. $\{|\psi_i\rangle\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$|\psi
angle = \sum_i \lambda_i |\psi_i
angle.$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

A finite or countably infinite family $\{|\psi_i\rangle\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

- 1. $\{|\psi_i\rangle\}$ are pairwise orthogonal: $|\psi_i\rangle \perp |\psi_j\rangle$ for any *i*, *j* with $i \neq j$;
- 2. $\{|\psi_i\rangle\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$|\psi
angle = \sum_i \lambda_i |\psi_i
angle.$$

► The numbers of vectors in any two orthonormal bases are the same. It is called the dimension of *H*, dim *H*.

A finite or countably infinite family $\{|\psi_i\rangle\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

- 1. $\{|\psi_i\rangle\}$ are pairwise orthogonal: $|\psi_i\rangle \perp |\psi_j\rangle$ for any *i*, *j* with $i \neq j$;
- 2. $\{|\psi_i\rangle\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$|\psi
angle = \sum_i \lambda_i |\psi_i
angle.$$

- ► The numbers of vectors in any two orthonormal bases are the same. It is called the dimension of *H*, dim *H*.
- If an orthonormal basis contains infinitely many vectors, then dim H = ∞.

A finite or countably infinite family $\{|\psi_i\rangle\}$ of unit vectors is an orthonormal basis of \mathcal{H} if

- 1. $\{|\psi_i\rangle\}$ are pairwise orthogonal: $|\psi_i\rangle \perp |\psi_j\rangle$ for any *i*, *j* with $i \neq j$;
- 2. $\{|\psi_i\rangle\}$ span the whole space \mathcal{H} : each $|\psi\rangle \in \mathcal{H}$ can be written as a linear combination:

$$|\psi
angle = \sum_i \lambda_i |\psi_i
angle.$$

- The numbers of vectors in any two orthonormal bases are the same. It is called the dimension of \mathcal{H} , dim \mathcal{H} .
- If an orthonormal basis contains infinitely many vectors, then dim H = ∞.
- If dim $\mathcal{H} = n$, fix an orthonormal basis $\{|\psi_1\rangle, ..., |\psi_n\rangle\}$, then a vector $|\psi\rangle = \sum_{i=1}^n \lambda_i |\psi_i\rangle \in \mathcal{H}$ is represented by the vector in \mathbb{C}^n :

$$\left(\begin{array}{c}\lambda_1\\ \dots\\ \lambda_n\end{array}\right)$$

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

then *X* is called a subspace of \mathcal{H} .

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$, 1.1 $|\varphi\rangle + |\psi\rangle \in X$;

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

then *X* is called a subspace of \mathcal{H} .

Let \mathcal{H} be a Hilbert space.

1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

1.1
$$|\varphi\rangle + |\psi\rangle \in X;$$

1.2 $\lambda |\varphi\rangle \in X,$

then *X* is called a subspace of \mathcal{H} .

Let \mathcal{H} be a Hilbert space.

- 1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
 - 1.1 $|\varphi\rangle + |\psi\rangle \in X;$ 1.2 $\lambda |\varphi\rangle \in X,$

then *X* is called a subspace of \mathcal{H} .

2. For each $X \subseteq \mathcal{H}$, its closure \overline{X} is the set of limits $\lim_{n\to\infty} |\psi_n\rangle$ of sequences $\{|\psi_n\rangle\}$ in *X*.

Let \mathcal{H} be a Hilbert space.

- 1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
 - 1.1 $|\varphi\rangle + |\psi\rangle \in X;$ 1.2 $\lambda |\varphi\rangle \in X,$

then *X* is called a subspace of \mathcal{H} .

2. For each $X \subseteq \mathcal{H}$, its closure \overline{X} is the set of limits $\lim_{n\to\infty} |\psi_n\rangle$ of sequences $\{|\psi_n\rangle\}$ in *X*.

3. A subspace *X* of \mathcal{H} is closed if $\overline{X} = X$.

Let \mathcal{H} be a Hilbert space.

- 1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
 - 1.1 $|\varphi\rangle + |\psi\rangle \in X;$ 1.2 $\lambda |\varphi\rangle \in X,$

then *X* is called a subspace of \mathcal{H} .

- 2. For each $X \subseteq \mathcal{H}$, its closure \overline{X} is the set of limits $\lim_{n\to\infty} |\psi_n\rangle$ of sequences $\{|\psi_n\rangle\}$ in *X*.
- 3. A subspace *X* of \mathcal{H} is closed if $\overline{X} = X$.

• For $X \subseteq \mathcal{H}$, the space spanned by *X*:

$$spanX = \left\{ \sum_{i=1}^{n} \lambda_{i} |\psi_{i}\rangle : n \geq 0, \lambda_{i} \in \mathbb{C} \text{ and } |\psi_{i}\rangle \in X \ (i = 1, ..., n) \right\}$$

Let \mathcal{H} be a Hilbert space.

- 1. If $X \subseteq \mathcal{H}$, and for any $|\varphi\rangle$, $|\psi\rangle \in X$ and $\lambda \in \mathbb{C}$,
 - 1.1 $|\varphi\rangle + |\psi\rangle \in X;$ 1.2 $\lambda |\varphi\rangle \in X,$

then *X* is called a subspace of \mathcal{H} .

- 2. For each $X \subseteq \mathcal{H}$, its closure \overline{X} is the set of limits $\lim_{n\to\infty} |\psi_n\rangle$ of sequences $\{|\psi_n\rangle\}$ in *X*.
- 3. A subspace *X* of \mathcal{H} is closed if $\overline{X} = X$.

• For $X \subseteq \mathcal{H}$, the space spanned by *X*:

$$spanX = \left\{ \sum_{i=1}^{n} \lambda_i |\psi_i\rangle : n \ge 0, \lambda_i \in \mathbb{C} \text{ and } |\psi_i\rangle \in X \ (i = 1, ..., n) \right\}$$

• \overline{spanX} is the closed subspace generated by X.

1. For any $X, Y \subseteq \mathcal{H}$, X and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp |\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

- 1. For any $X, Y \subseteq \mathcal{H}$, X and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp |\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
- 2. The orthocomplement of a closed subspace X of \mathcal{H} is

$$X^{\perp} = \{ |\varphi\rangle \in \mathcal{H} : |\varphi\rangle \perp X \}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- 1. For any $X, Y \subseteq \mathcal{H}$, X and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp |\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
- 2. The orthocomplement of a closed subspace X of \mathcal{H} is

$$X^{\perp} = \{ |\varphi\rangle \in \mathcal{H} : |\varphi\rangle \perp X \}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

3. The orthocomplement X^{\perp} is a closed subspace of \mathcal{H} , $(X^{\perp})^{\perp} = X$.

- 1. For any $X, Y \subseteq \mathcal{H}$, X and Y are orthogonal, $X \perp Y$, if $|\varphi\rangle \perp |\psi\rangle$ for all $|\varphi\rangle \in X$ and $|\psi\rangle \in Y$.
- 2. The orthocomplement of a closed subspace X of \mathcal{H} is

$$X^{\perp} = \{ |\varphi\rangle \in \mathcal{H} : |\varphi\rangle \perp X \}.$$

- 3. The orthocomplement X^{\perp} is a closed subspace of \mathcal{H} , $(X^{\perp})^{\perp} = X$.
- 4. Let *X*, *Y* be two subspaces of \mathcal{H} . Then

$$X \oplus Y = \{ |\varphi\rangle + |\psi\rangle : |\varphi\rangle \in X \text{ and } |\psi\rangle \in Y \}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.

• A linear combination $|\psi\rangle = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle$ of states $|\psi_1\rangle, ..., |\psi_n\rangle$ is often called their *superposition*

- コン・4回シュービン・4回シューレー

- The state space of a closed (i.e. an isolated) quantum system is represented by a Hilbert space.
- A pure state of the system is described by a unit vector in its state space.

• A linear combination $|\psi\rangle = \sum_{i=1}^{n} \lambda_i |\psi_i\rangle$ of states $|\psi_1\rangle, ..., |\psi_n\rangle$ is often called their *superposition*

• Complex coefficients λ_i are called *probability amplitudes*.

2-dimensional Hilbert space:

$$\mathcal{H}_2 = \mathbb{C}^2 = \{ lpha | 0
angle + eta | 1
angle : lpha, eta \in \mathbb{C} \}.$$

2-dimensional Hilbert space:

$$\mathcal{H}_2 = \mathbb{C}^2 = \{ \alpha | 0 \rangle + \beta | 1 \rangle : \alpha, \beta \in \mathbb{C} \}.$$

Inner product:

$$(\alpha|0\rangle + \beta|1\rangle, \alpha'|0\rangle + \beta'|1\rangle) = \alpha^* \alpha' + \beta^* \beta'.$$

2-dimensional Hilbert space:

$$\mathcal{H}_2 = \mathbb{C}^2 = \{ \alpha | 0 \rangle + \beta | 1 \rangle : \alpha, \beta \in \mathbb{C} \}.$$

Inner product:

$$(\alpha|0
angle+\beta|1
angle, lpha'|0
angle+eta'|1
angle)=lpha^*lpha'+eta^*eta'.$$

(ロト・日本)・モン・モン・モー のへの

• $\{|0\rangle, |1\rangle\}$ is an orthonormal basis of \mathcal{H}_2 , the computational basis.

2-dimensional Hilbert space:

$$\mathcal{H}_2 = \mathbb{C}^2 = \{ \alpha | 0 \rangle + \beta | 1 \rangle : \alpha, \beta \in \mathbb{C} \}.$$

Inner product:

$$(\alpha|0\rangle + \beta|1\rangle, \alpha'|0\rangle + \beta'|1\rangle) = \alpha^* \alpha' + \beta^* \beta'.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- $\{|0\rangle, |1\rangle\}$ is an orthonormal basis of \mathcal{H}_2 , the computational basis.
- A state of a qubit is described by a unit vector $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$.

2-dimensional Hilbert space:

$$\mathcal{H}_2 = \mathbb{C}^2 = \{ \alpha | 0 \rangle + \beta | 1 \rangle : \alpha, \beta \in \mathbb{C} \}.$$

Inner product:

$$(\alpha|0\rangle + \beta|1\rangle, \alpha'|0\rangle + \beta'|1\rangle) = \alpha^* \alpha' + \beta^* \beta'.$$

- $\{|0\rangle, |1\rangle\}$ is an orthonormal basis of \mathcal{H}_2 , the computational basis.
- A state of a qubit is described by a unit vector $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ with $|\alpha|^2 + |\beta|^2 = 1$.

$$|+\rangle = \frac{|0\rangle + |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\1 \end{pmatrix}, \quad |-\rangle = \frac{|0\rangle - |1\rangle}{\sqrt{2}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1\\-1 \end{pmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example: Square summable sequences

• The space of square summable sequences:

$$\mathcal{H}_{\infty} = \left\{ \sum_{n = -\infty}^{\infty} \alpha_n | n \rangle : \alpha_n \in \mathbb{C} \text{ for all } n \in \mathbb{Z} \text{ and } \sum_{n = -\infty}^{\infty} |\alpha_n|^2 < \infty \right\}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example: Square summable sequences

• The space of square summable sequences:

$$\mathcal{H}_{\infty} = \left\{ \sum_{n = -\infty}^{\infty} \alpha_n | n \rangle : \alpha_n \in \mathbb{C} \text{ for all } n \in \mathbb{Z} \text{ and } \sum_{n = -\infty}^{\infty} |\alpha_n|^2 < \infty \right\}.$$

Inner product:

$$\left(\sum_{n=-\infty}^{\infty}\alpha_n|n\rangle,\sum_{n=-\infty}^{\infty}\alpha'|n\rangle\right)=\sum_{n=-\infty}^{\infty}\alpha_n^*\alpha'_n.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example: Square summable sequences

The space of square summable sequences:

$$\mathcal{H}_{\infty} = \left\{ \sum_{n = -\infty}^{\infty} \alpha_n | n \rangle : \alpha_n \in \mathbb{C} \text{ for all } n \in \mathbb{Z} \text{ and } \sum_{n = -\infty}^{\infty} |\alpha_n|^2 < \infty \right\}.$$

Inner product:

$$\left(\sum_{n=-\infty}^{\infty} \alpha_n |n\rangle, \sum_{n=-\infty}^{\infty} \alpha' |n\rangle\right) = \sum_{n=-\infty}^{\infty} \alpha_n^* \alpha'_n$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

► { $|n\rangle$: $n \in \mathbb{Z}$ } is an orthonormal basis, \mathcal{H}_{∞} is infinite-dimensional.

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

 $A:\mathcal{H}\to\mathcal{K}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

is a linear operator if it satisfies the conditions:

1. $A(|\varphi\rangle + |\psi\rangle) = A|\varphi\rangle + A|\psi\rangle;$

Let ${\mathcal H}$ and ${\mathcal K}$ be Hilbert spaces. A mapping

$$A:\mathcal{H}\to\mathcal{K}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

is a linear operator if it satisfies the conditions:

1.
$$A(|\varphi\rangle + |\psi\rangle) = A|\varphi\rangle + A|\psi\rangle;$$

2. $A(\lambda|\psi\rangle) = \lambda A|\psi\rangle.$

Examples

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$A:\mathcal{H}\to\mathcal{K}$$

is a linear operator if it satisfies the conditions:

1.
$$A(|\varphi\rangle + |\psi\rangle) = A|\varphi\rangle + A|\psi\rangle;$$

2. $A(\lambda|\psi\rangle) = \lambda A|\psi\rangle.$

Examples

• Identity operator maps each vector in \mathcal{H} to itself, denoted $I_{\mathcal{H}}$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$A:\mathcal{H}\to\mathcal{K}$$

is a linear operator if it satisfies the conditions:

1.
$$A(|\varphi\rangle + |\psi\rangle) = A|\varphi\rangle + A|\psi\rangle;$$

2. $A(\lambda|\psi\rangle) = \lambda A|\psi\rangle.$

Examples

- Identity operator maps each vector in \mathcal{H} to itself, denoted $I_{\mathcal{H}}$.
- Zero operator maps every vector in \mathcal{H} to the zero vector, denoted $0_{\mathcal{H}}$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let \mathcal{H} and \mathcal{K} be Hilbert spaces. A mapping

$$A:\mathcal{H}\to\mathcal{K}$$

is a linear operator if it satisfies the conditions:

1.
$$A(|\varphi\rangle + |\psi\rangle) = A|\varphi\rangle + A|\psi\rangle;$$

2. $A(\lambda|\psi\rangle) = \lambda A|\psi\rangle.$

Examples

- Identity operator maps each vector in \mathcal{H} to itself, denoted $I_{\mathcal{H}}$.
- Zero operator maps every vector in \mathcal{H} to the zero vector, denoted $0_{\mathcal{H}}$.
- For vectors $|\varphi\rangle$, $|\psi\rangle \in \mathcal{H}$, their outer product is the operator $|\varphi\rangle\langle\psi|$ in \mathcal{H} :

 $(|\varphi\rangle\langle\psi|)|\chi\rangle = \langle\psi|\chi\rangle|\varphi\rangle.$

Projection

▶ Let *X* be a closed subspace of \mathcal{H} and $|\psi\rangle \in \mathcal{H}$. Then there exist uniquely $|\psi_0\rangle \in X$ and $|\psi_1\rangle \in X^{\perp}$ such that

 $|\psi
angle = |\psi_0
angle + |\psi_1
angle.$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Projection

▶ Let *X* be a closed subspace of \mathcal{H} and $|\psi\rangle \in \mathcal{H}$. Then there exist uniquely $|\psi_0\rangle \in X$ and $|\psi_1\rangle \in X^{\perp}$ such that

$$|\psi
angle = |\psi_0
angle + |\psi_1
angle.$$

• Vector $|\psi_0\rangle$ is called the projection of $|\psi\rangle$ onto *X*, $|\psi_0\rangle = P_X |\psi\rangle$.

Projection

▶ Let *X* be a closed subspace of \mathcal{H} and $|\psi\rangle \in \mathcal{H}$. Then there exist uniquely $|\psi_0\rangle \in X$ and $|\psi_1\rangle \in X^{\perp}$ such that

$$|\psi
angle = |\psi_0
angle + |\psi_1
angle.$$

- Vector $|\psi_0\rangle$ is called the projection of $|\psi\rangle$ onto *X*, $|\psi_0\rangle = P_X |\psi\rangle$.
- ► For closed subspace *X* of *H*, the operator

$$P_X: \mathcal{H} \to X, \ |\psi\rangle \mapsto P_X |\psi\rangle$$

is the *projector* onto *X*.

Bounded operators

• An operator *A* is bounded if there is a constant $C \ge 0$ such that

 $||A|\psi\rangle|| \le C \cdot ||\psi||$

for all $|\psi\rangle \in \mathcal{H}$.

Bounded operators

• An operator *A* is bounded if there is a constant $C \ge 0$ such that

 $\|A|\psi\rangle\| \leq C \cdot \|\psi\|$

for all $|\psi\rangle \in \mathcal{H}$.

• The norm of *A* is

 $||A|| = \inf\{C \ge 0 : ||A|\psi\rangle|| \le C \cdot ||\psi|| \text{ for all } \psi \in \mathcal{H}\}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Bounded operators

• An operator *A* is bounded if there is a constant $C \ge 0$ such that

 $\|A|\psi\rangle\| \leq C \cdot \|\psi\|$

for all $|\psi\rangle \in \mathcal{H}$.

• The norm of *A* is

 $||A|| = \inf\{C \ge 0 : ||A|\psi\rangle|| \le C \cdot ||\psi|| \text{ for all } \psi \in \mathcal{H}\}.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\mathcal{L}(\mathcal{H})$ stands for the set of bounded operators in \mathcal{H} .

Operations of operators

$$\begin{aligned} (A+B)|\psi\rangle &= A|\psi\rangle + B|\psi\rangle,\\ (\lambda A)|\psi\rangle &= \lambda(A|\psi\rangle),\\ (BA)|\psi\rangle &= B(A|\psi\rangle). \end{aligned}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Operations of operators

$$\begin{aligned} (A+B)|\psi\rangle &= A|\psi\rangle + B|\psi\rangle,\\ (\lambda A)|\psi\rangle &= \lambda(A|\psi\rangle),\\ (BA)|\psi\rangle &= B(A|\psi\rangle). \end{aligned}$$

Positive operators

An operator $A \in \mathcal{L}(\mathcal{H})$ is positive if for all states $|\psi\rangle \in \mathcal{H}$:

 $\langle \psi | A | \psi \rangle \ge 0.$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Löwner order

 $A \sqsubseteq B$ if and only if B - A = B + (-1)A is positive.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Löwner order

 $A \sqsubseteq B$ if and only if B - A = B + (-1)A is positive.

Distance between operators

$$d(A,B) = \sup_{|\psi\rangle} ||A|\psi\rangle - B|\psi\rangle||$$

Matrix Representation of Operators

• When dim $\mathcal{H} = n$, *fix* orthonormal basis { $|\psi_1\rangle$, ..., $|\psi_n\rangle$ }, *A* can be represented by the $n \times n$ complex matrix:

$$A = (a_{ij})_{n \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ & \dots & \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

where $a_{ij} = \langle \psi_i | A | \psi_j \rangle = (|\psi_i\rangle, A | \psi_j \rangle).$

Matrix Representation of Operators

When dim H = n, fix orthonormal basis {|ψ₁⟩, ..., |ψ_n⟩}, A can be represented by the n × n complex matrix:

$$A = (a_{ij})_{n \times n} = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ & \dots & \\ a_{n1} & \dots & a_{nn} \end{pmatrix}$$

where $a_{ij} = \langle \psi_i | A | \psi_j \rangle = (|\psi_i\rangle, A | \psi_j \rangle).$ • If $|\psi\rangle = \sum_{i=1}^n \alpha_i |\psi_i\rangle$, then

$$A|\psi\rangle = A \begin{pmatrix} \alpha_1 \\ \dots \\ \alpha_n \end{pmatrix} = \begin{pmatrix} \beta_1 \\ \dots \\ \beta_n \end{pmatrix}$$

where $\beta_i = \sum_{j=1}^n a_{ij} \alpha_j$.

For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$(A|\varphi\rangle,|\psi\rangle) = (|\varphi\rangle,A^{\dagger}|\psi\rangle).$$

For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle,A^{\dagger}|\psi\rangle
ight).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• Operator *A*[†] is called the *adjoint* of *A*.

For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$(A|\varphi\rangle,|\psi\rangle)=\left(|\varphi\rangle,A^{\dagger}|\psi\rangle
ight).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Operator *A*[†] is called the *adjoint* of *A*.
- If $A = (a_{ij})_{n \times n'}$, then $A^{\dagger} = (b_{ij})_{n \times n}$

with
$$b_{ij} = a_{ji}^*$$
.

For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$(A|\varphi\rangle,|\psi\rangle) = \left(|\varphi\rangle,A^{\dagger}|\psi\rangle\right).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Operator *A*[†] is called the *adjoint* of *A*.
- If $A = (a_{ij})_{n \times n}$, then $A^{\dagger} = (b_{ij})_{n \times n}$

with $b_{ij} = a_{ji}^*$.

• An operator $U \in \mathcal{L}(\mathcal{H})$ is *unitary* if $U^{\dagger}U = UU^{\dagger} = I_{\mathcal{H}}$.

Unitary Transformations

For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$(A|\varphi\rangle,|\psi\rangle) = \left(|\varphi\rangle,A^{\dagger}|\psi\rangle\right).$$

- Operator *A*[†] is called the *adjoint* of *A*.
- If $A = (a_{ij})_{n \times n}$, then $A^{\dagger} = (b_{ij})_{n \times n}$

with $b_{ij} = a_{ji}^*$.

- An operator $U \in \mathcal{L}(\mathcal{H})$ is *unitary* if $U^{\dagger}U = UU^{\dagger} = I_{\mathcal{H}}$.
- All unitary transformations U preserve inner product:

$$(U|\varphi\rangle, U|\psi\rangle) = \langle \varphi|\psi\rangle.$$

Unitary Transformations

For any operator $A \in \mathcal{L}(\mathcal{H})$, there exists a unique operator A^{\dagger} such that

$$(A|\varphi\rangle,|\psi\rangle) = (|\varphi\rangle,A^{\dagger}|\psi\rangle).$$

- Operator *A*[†] is called the *adjoint* of *A*.
- If $A = (a_{ij})_{n \times n}$, then $A^{\dagger} = (b_{ij})_{n \times n}$

with $b_{ij} = a_{ji}^*$.

- An operator $U \in \mathcal{L}(\mathcal{H})$ is *unitary* if $U^{\dagger}U = UU^{\dagger} = I_{\mathcal{H}}$.
- All unitary transformations U preserve inner product:

$$(U|\varphi\rangle, U|\psi\rangle) = \langle \varphi|\psi\rangle.$$

• If dim $\mathcal{H} = n$, then a unitary operator is represented by an $n \times n$ unitary matrix $U: U^{\dagger}U = I_n$.

Suppose that the states of a closed quantum system (i.e. a system without interactions with its environment) at times t₀ and t are |ψ₀⟩ and |ψ⟩, respectively.

- Suppose that the states of a closed quantum system (i.e. a system without interactions with its environment) at times t₀ and t are |ψ₀⟩ and |ψ⟩, respectively.
- Then they are related to each other by a unitary operator U which depends only on the times t₀ and t,

 $|\psi\rangle = U|\psi_0\rangle.$

Example: Hadamard transformation

$$H = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & 1\\ 1 & -1 \end{array} \right)$$

$$H|0\rangle = H\begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\1 \end{pmatrix} = |+\rangle,$$

$$H|1\rangle = H\begin{pmatrix} 0\\1 \end{pmatrix} = \frac{1}{\sqrt{2}}\begin{pmatrix} 1\\-1 \end{pmatrix} = |-\rangle.$$

Example: Translation

• Let *k* be an integer. The *k*-translation operator T_k in \mathcal{H}_{∞} is defined by

$$T_k|n\rangle = |n+k\rangle$$

for all $n \in \mathbb{Z}$.

Example: Translation

• Let *k* be an integer. The *k*-translation operator T_k in \mathcal{H}_{∞} is defined by

$$T_k|n\rangle = |n+k\rangle$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

for all $n \in \mathbb{Z}$.

• $T_L = T_{-1}$ and $T_R = T_1$. They moves a particle on the line one position to the left and to the right, respectively.

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

A quantum measurement on a system with state Hilbert space *H* is described by a collection {*M_m*} ⊆ *L*(*H*) of operators satisfying the normalisation condition:

$$\sum_{m} M_{m}^{\dagger} M_{m} = I_{\mathcal{H}}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

A quantum measurement on a system with state Hilbert space *H* is described by a collection {*M_m*} ⊆ *L*(*H*) of operators satisfying the normalisation condition:

$$\sum_m M_m^{\dagger} M_m = I_{\mathcal{H}}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

► *M_m* are called measurement operators.

A quantum measurement on a system with state Hilbert space *H* is described by a collection {*M_m*} ⊆ *L*(*H*) of operators satisfying the normalisation condition:

$$\sum_m M_m^{\dagger} M_m = I_{\mathcal{H}}$$

- ► *M_m* are called measurement operators.
- The index *m* stands for the measurement outcomes that may occur in the experiment.

A quantum measurement on a system with state Hilbert space *H* is described by a collection {*M_m*} ⊆ *L*(*H*) of operators satisfying the normalisation condition:

$$\sum_{m} M_{m}^{\dagger} M_{m} = I_{\mathcal{H}}$$

- ► *M_m* are called measurement operators.
- The index *m* stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is |ψ⟩ immediately before the measurement, then for each *m*,

A quantum measurement on a system with state Hilbert space *H* is described by a collection {*M_m*} ⊆ *L*(*H*) of operators satisfying the normalisation condition:

$$\sum_m M_m^{\dagger} M_m = I_{\mathcal{H}}$$

- ► *M_m* are called measurement operators.
- The index *m* stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is |ψ⟩ immediately before the measurement, then for each *m*,
 - the probability that result *m* occurs in the measurement is

$$p(m) = ||M_m|\psi\rangle||^2 = \langle \psi|M_m^{\dagger}M_m|\psi\rangle$$
 (Born rule)

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

A quantum measurement on a system with state Hilbert space *H* is described by a collection {*M_m*} ⊆ *L*(*H*) of operators satisfying the normalisation condition:

$$\sum_m M_m^{\dagger} M_m = I_{\mathcal{H}}$$

- ► *M_m* are called measurement operators.
- The index *m* stands for the measurement outcomes that may occur in the experiment.
- If the state of a quantum system is |ψ⟩ immediately before the measurement, then for each *m*,
 - the probability that result *m* occurs in the measurement is

$$p(m) = ||M_m|\psi\rangle||^2 = \langle \psi|M_m^{\dagger}M_m|\psi\rangle$$
 (Born rule)

• the state of the system after the measurement with outcome *m* is

$$|\psi_m
angle = \frac{M_m|\psi
angle}{\sqrt{p(m)}}.$$

• The measurement of a qubit in the computational basis:

$$M_0 = |0\rangle\langle 0|, \quad M_1 = |1\rangle\langle 1|.$$

• The measurement of a qubit in the computational basis:

$$M_0 = |0
angle\langle 0|$$
, $M_1 = |1
angle\langle 1|$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• If the qubit was in state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ before the measurement, then:

• The measurement of a qubit in the computational basis:

$$M_0 = |0\rangle\langle 0|, \quad M_1 = |1\rangle\langle 1|.$$

- If the qubit was in state $|\psi\rangle = \alpha |0\rangle + \beta |1\rangle$ before the measurement, then:
 - the probability of obtaining outcome 0 is

$$p(0) = \langle \psi | M_0^{\dagger} M_0 | \psi \rangle = \langle \psi | M_0 | \psi \rangle = | \alpha |^2,$$

the state after the measurement is

$$\frac{M_0|\psi\rangle}{\sqrt{p(0)}} = |0\rangle.$$

The measurement of a qubit in the computational basis:

$$M_0 = |0\rangle\langle 0|, \quad M_1 = |1\rangle\langle 1|.$$

- If the qubit was in state |ψ⟩ = α|0⟩ + β|1⟩ before the measurement, then:
 - the probability of obtaining outcome 0 is

$$p(0) = \langle \psi | M_0^{\dagger} M_0 | \psi \rangle = \langle \psi | M_0 | \psi \rangle = | \alpha |^2,$$

the state after the measurement is

$$\frac{M_0|\psi\rangle}{\sqrt{p(0)}} = |0\rangle.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

the probability of outcome 1 is p(1) = |β|², the state after the measurement is |1⟩.

• An operator $M \in \mathcal{L}(\mathcal{H})$ is *Hermitian* if it is self-adjoint:

$$M^{\dagger} = M.$$

In physics, a Hermitian operator is called an *observable*.

• An operator $M \in \mathcal{L}(\mathcal{H})$ is *Hermitian* if it is self-adjoint:

$$M^{\dagger} = M.$$

In physics, a Hermitian operator is called an observable.

An operator *P* is a projector: $P = P_X$ for some closed subspace *X* of \mathcal{H} , if and only if *P* is Hermitian and $P^2 = P$.

Eigenvectors, Eigenvalues

• An operator $M \in \mathcal{L}(\mathcal{H})$ is *Hermitian* if it is self-adjoint:

$$M^{\dagger} = M.$$

In physics, a Hermitian operator is called an observable.

• An operator *P* is a projector: $P = P_X$ for some closed subspace *X* of \mathcal{H} , if and only if *P* is Hermitian and $P^2 = P$.

Eigenvectors, Eigenvalues

• An *eigenvector* of an operator *A* is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle = \lambda |\psi\rangle$ for some $\lambda \in \mathbb{C}$.

An operator $M \in \mathcal{L}(\mathcal{H})$ is *Hermitian* if it is self-adjoint:

$$M^{\dagger} = M$$

In physics, a Hermitian operator is called an observable.

• An operator *P* is a projector: $P = P_X$ for some closed subspace *X* of \mathcal{H} , if and only if *P* is Hermitian and $P^2 = P$.

Eigenvectors, Eigenvalues

• An *eigenvector* of an operator *A* is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle = \lambda |\psi\rangle$ for some $\lambda \in \mathbb{C}$.

• λ is called the *eigenvalue* of *A* corresponding to $|\psi\rangle$.

• An operator $M \in \mathcal{L}(\mathcal{H})$ is *Hermitian* if it is self-adjoint:

$$M^{\dagger} = M.$$

In physics, a Hermitian operator is called an observable.

An operator *P* is a projector: $P = P_X$ for some closed subspace *X* of \mathcal{H} , if and only if *P* is Hermitian and $P^2 = P$.

Eigenvectors, Eigenvalues

- An *eigenvector* of an operator *A* is a non-zero vector $|\psi\rangle \in \mathcal{H}$ such that $A|\psi\rangle = \lambda |\psi\rangle$ for some $\lambda \in \mathbb{C}$.
- λ is called the *eigenvalue* of *A* corresponding to $|\psi\rangle$.
- The set of eigenvalues of A is called the (point) spectrum of A and denoted spec(A).

• For each eigenvalue $\lambda \in spec(A)$, the set

$$\{|\psi\rangle\in\mathcal{H}:A|\psi\rangle=\lambda|\psi
angle\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

is a closed subspace of \mathcal{H} and called the *eigenspace* of A corresponding to λ .

• For each eigenvalue $\lambda \in spec(A)$, the set

$$\{|\psi\rangle \in \mathcal{H} : A|\psi\rangle = \lambda|\psi\rangle\}$$

is a closed subspace of \mathcal{H} and called the *eigenspace* of A corresponding to λ .

• The eigenspaces corresponding to different eigenvalues $\lambda_1 \neq \lambda_2$ are orthogonal

Spectral Decomposition

• For each eigenvalue $\lambda \in spec(A)$, the set

$$\{|\psi\rangle \in \mathcal{H} : A|\psi\rangle = \lambda|\psi\rangle\}$$

is a closed subspace of \mathcal{H} and called the *eigenspace* of A corresponding to λ .

• The eigenspaces corresponding to different eigenvalues $\lambda_1 \neq \lambda_2$ are orthogonal

Spectral Decomposition

► All eigenvalues of an observable (i.e. a Hermitian operator) *M* are real numbers.

• For each eigenvalue $\lambda \in spec(A)$, the set

$$\{|\psi\rangle \in \mathcal{H} : A|\psi\rangle = \lambda|\psi\rangle\}$$

is a closed subspace of \mathcal{H} and called the *eigenspace* of A corresponding to λ .

• The eigenspaces corresponding to different eigenvalues $\lambda_1 \neq \lambda_2$ are orthogonal

Spectral Decomposition

► All eigenvalues of an observable (i.e. a Hermitian operator) *M* are real numbers.

$$M = \sum_{\lambda \in spec(M)} \lambda P_{\lambda}$$

where P_{λ} is the projector onto the eigenspace corresponding to λ .

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

Projective Measurements

• An observable *M* defines a measurement $\{P_{\lambda} : \lambda \in spec(M)\}$, called a projective measurement.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Projective Measurements

- An observable *M* defines a measurement $\{P_{\lambda} : \lambda \in spec(M)\}$, called a projective measurement.
- Upon measuring a system in state $|\psi\rangle$, the probability of getting result λ is

$$p(\lambda) = \langle \psi | P_{\lambda} | \psi \rangle$$

the state of the system after the measurement is

$$\frac{P_{\lambda}|\psi\rangle}{\sqrt{p(\lambda)}}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Projective Measurements

- An observable *M* defines a measurement $\{P_{\lambda} : \lambda \in spec(M)\}$, called a projective measurement.
- Upon measuring a system in state $|\psi\rangle$, the probability of getting result λ is

$$p(\lambda) = \langle \psi | P_{\lambda} | \psi \rangle$$

the state of the system after the measurement is

$$\frac{P_{\lambda}|\psi\rangle}{\sqrt{p(\lambda)}}$$

• The expectation — average value — of *M* in state $|\psi\rangle$:

$$\langle M \rangle_{\psi} = \sum_{\lambda \in spec(M)} p(\lambda) \cdot \lambda = \langle \psi | M | \psi \rangle.$$

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Tensor Product of Hilbert Spaces

Let *H_i* be a Hilbert spaces with {|*ψ_{ij_i}*⟩} as an orthonormal basis for *i* = 1, ..., *n*.

Tensor Product of Hilbert Spaces

- Let *H_i* be a Hilbert spaces with {|*ψ_{ij_i}*⟩} as an orthonormal basis for *i* = 1, ..., *n*.
- Write \mathcal{B} for the set of the elements in the form:

$$|\psi_{1j_1},...,\psi_{nj_n}\rangle = |\psi_{1j_1}\otimes...\otimes\psi_{nj_n}\rangle = |\psi_{1j_1}\rangle\otimes...\otimes|\psi_{nj_n}\rangle.$$

◆□▶◆圖▶◆圖▶◆圖▶ ■ のへで

Tensor Product of Hilbert Spaces

- Let *H_i* be a Hilbert spaces with {|*ψ_{ij_i}*⟩} as an orthonormal basis for *i* = 1, ..., *n*.
- Write *B* for the set of the elements in the form:

$$|\psi_{1j_1},...,\psi_{nj_n}\rangle = |\psi_{1j_1}\otimes...\otimes\psi_{nj_n}\rangle = |\psi_{1j_1}\rangle\otimes...\otimes|\psi_{nj_n}\rangle.$$

► Then the tensor product of H_i (i = 1, ..., n) is the Hilbert space with B as an orthonormal basis:

$$\bigotimes_i \mathcal{H}_i = span\mathcal{B}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

The state space of a composite quantum system is the tensor product of the state spaces of its components.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

The state space of a composite quantum system is the tensor product of the state spaces of its components.

Entanglement

► *S* is a quantum system composed by subsystems *S*₁, ..., *S*_n with state Hilbert space *H*₁, ..., *H*_n.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• If for each $1 \le i \le n$, S_i is in state $|\psi_i\rangle \in \mathcal{H}_i$, then *S* is in the *product state* $|\psi_1, ..., \psi_n\rangle$.

Postulate of quantum mechanics 4

The state space of a composite quantum system is the tensor product of the state spaces of its components.

Entanglement

- ► *S* is a quantum system composed by subsystems *S*₁, ..., *S*_n with state Hilbert space *H*₁, ..., *H*_n.
- ▶ If for each $1 \le i \le n$, S_i is in state $|\psi_i\rangle \in \mathcal{H}_i$, then *S* is in the *product state* $|\psi_1, ..., \psi_n\rangle$.
- A state of the composite system is *entangled* if it is not a product of states of its component systems.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example

• The state space of the system of *n* qubits:

$$\mathcal{H}_2^{\otimes n} = \mathbb{C}^{2^n} = \left\{ \sum_{x \in \{0,1\}^n} \alpha_x | x \rangle : \alpha_x \in \mathbb{C} \text{ for all } x \in \{0,1\}^n \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Example

• The state space of the system of *n* qubits:

$$\mathcal{H}_2^{\otimes n} = \mathbb{C}^{2^n} = \left\{ \sum_{x \in \{0,1\}^n} \alpha_x | x \rangle : \alpha_x \in \mathbb{C} \text{ for all } x \in \{0,1\}^n \right\}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

• A two-qubit system can be in a product state like $|00\rangle$, $|1\rangle|+\rangle$.

Example

• The state space of the system of *n* qubits:

$$\mathcal{H}_{2}^{\otimes n} = \mathbb{C}^{2^{n}} = \left\{ \sum_{x \in \{0,1\}^{n}} \alpha_{x} | x \rangle : \alpha_{x} \in \mathbb{C} \text{ for all } x \in \{0,1\}^{n} \right\}$$

- A two-qubit system can be in a product state like $|00\rangle$, $|1\rangle|+\rangle$.
- It can also be in an entangled state like the Bell states or the EPR (Einstein-Podolsky-Rosen) pairs:

$$\begin{split} |\beta_{00}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \quad |\beta_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle), \\ |\beta_{10}\rangle &= \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle), \quad |\beta_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle). \end{split}$$

• Let $A_i \in \mathcal{L}(\mathcal{H}_i)$ for i = 1, ..., n.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

• Let
$$A_i \in \mathcal{L}(\mathcal{H}_i)$$
 for $i = 1, ..., n$.

• Their tensor product $\bigotimes_{i=1}^n A_i = A_1 \otimes ... \otimes A_n \in \mathcal{L} (\bigotimes_{i=1}^n \mathcal{H}_i)$:

$$(A_1 \otimes ... \otimes A_n) | \varphi_1, ..., \varphi_n \rangle = A_1 | \varphi_1 \rangle \otimes ... \otimes A_n | \varphi_n \rangle$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Controlled-NOT

• Let
$$A_i \in \mathcal{L}(\mathcal{H}_i)$$
 for $i = 1, ..., n$.

• Their tensor product $\bigotimes_{i=1}^n A_i = A_1 \otimes ... \otimes A_n \in \mathcal{L} (\bigotimes_{i=1}^n \mathcal{H}_i)$:

$$(A_1 \otimes ... \otimes A_n) | \varphi_1, ..., \varphi_n \rangle = A_1 | \varphi_1 \rangle \otimes ... \otimes A_n | \varphi_n \rangle$$

Controlled-NOT

• The controlled-NOT or CNOT operator *C* in $\mathcal{H}_2^{\otimes 2} = \mathbb{C}^4$:

 $C|00\rangle = |00\rangle, \quad C|01\rangle = |01\rangle, \quad C|10\rangle = |11\rangle, \quad C|11\rangle = |10\rangle$ $C = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}.$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

• Let
$$A_i \in \mathcal{L}(\mathcal{H}_i)$$
 for $i = 1, ..., n$.

• Their tensor product $\bigotimes_{i=1}^n A_i = A_1 \otimes ... \otimes A_n \in \mathcal{L} (\bigotimes_{i=1}^n \mathcal{H}_i)$:

$$(A_1 \otimes ... \otimes A_n) | \varphi_1, ..., \varphi_n \rangle = A_1 | \varphi_1 \rangle \otimes ... \otimes A_n | \varphi_n \rangle$$

Controlled-NOT

• The controlled-NOT or CNOT operator *C* in $\mathcal{H}_2^{\otimes 2} = \mathbb{C}^4$:

 $C|00\rangle = |00\rangle, \quad C|01\rangle = |01\rangle, \quad C|10\rangle = |11\rangle, \quad C|11\rangle = |10\rangle$ $C = \begin{pmatrix} 1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{pmatrix}.$

Transform product states into entangled states:

$$C|+\rangle|0\rangle = \beta_{00}, \quad C|+\rangle|1\rangle = \beta_{01}, \quad C|-\rangle|0\rangle = \beta_{10}, \quad C|-\rangle|1\rangle = \beta_{11}.$$

• Let $M = \{M_m\}$ be a quantum measurement in Hilbert space \mathcal{H} .

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- Let $M = \{M_m\}$ be a quantum measurement in Hilbert space \mathcal{H} .
- ► Introduce a new Hilbert space H_M = span{|m⟩} used to record the possible outcomes of M.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let $M = \{M_m\}$ be a quantum measurement in Hilbert space \mathcal{H} .
- ► Introduce a new Hilbert space H_M = span{|m⟩} used to record the possible outcomes of M.
- Choose a fixed state $|0\rangle \in \mathcal{H}_M$. Define unitary operator in $\mathcal{H}_M \otimes \mathcal{H}$:

$$U_M(|0\rangle|\psi\rangle) = \sum_m |m\rangle M_m|\psi\rangle$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Let $M = \{M_m\}$ be a quantum measurement in Hilbert space \mathcal{H} .
- ► Introduce a new Hilbert space H_M = span{|m⟩} used to record the possible outcomes of M.
- Choose a fixed state $|0\rangle \in \mathcal{H}_M$. Define unitary operator in $\mathcal{H}_M \otimes \mathcal{H}$:

$$U_M(|0\rangle|\psi\rangle) = \sum_m |m\rangle M_m|\psi\rangle$$

• Define a projective measurement $\overline{M} = \{\overline{M}_m\}$ in $\mathcal{H}_M \otimes \mathcal{H}$ with $\overline{M}_m = |m\rangle \langle m| \otimes I_{\mathcal{H}}$ for every *m*.

▶ Then *M* is realised by the projective measurement \overline{M} together with the unitary operator U_M .

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• Then *M* is realised by the projective measurement \overline{M} together with the unitary operator U_M .

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• For any pure state $|\psi
angle \in \mathcal{H}$,

- ▶ Then *M* is realised by the projective measurement \overline{M} together with the unitary operator U_M .
- For any pure state $|\psi
 angle \in \mathcal{H}$,
 - When we perform measurement *M* on |ψ⟩, the probability of outcome *m* is denoted *p_M(m)*, the post-measurement state corresponding to *m* is |ψ_m⟩.

- ▶ Then *M* is realised by the projective measurement \overline{M} together with the unitary operator U_M .
- For any pure state $|\psi
 angle \in \mathcal{H}$,
 - When we perform measurement *M* on |ψ⟩, the probability of outcome *m* is denoted *p_M(m)*, the post-measurement state corresponding to *m* is |ψ_m⟩.
 - When we perform measurement \overline{M} on $|\overline{\psi}\rangle = U_M(|0\rangle|\psi\rangle)$, the probability of outcome *m* is denoted $p_{\overline{M}}(m)$, the post-measurement state corresponding to *m* is $|\overline{\psi}_m\rangle$.

- ▶ Then *M* is realised by the projective measurement \overline{M} together with the unitary operator U_M .
- For any pure state $|\psi
 angle \in \mathcal{H}$,
 - When we perform measurement *M* on |ψ⟩, the probability of outcome *m* is denoted *p_M(m)*, the post-measurement state corresponding to *m* is |ψ_m⟩.
 - When we perform measurement \overline{M} on $|\overline{\psi}\rangle = U_M(|0\rangle|\psi\rangle)$, the probability of outcome *m* is denoted $p_{\overline{M}}(m)$, the post-measurement state corresponding to *m* is $|\overline{\psi}_m\rangle$.
- ▶ Then for each *m*, we have:

 $p_{\overline{M}}(m) = p_M(m)$ $|\overline{\psi}_m\rangle = |m\rangle|\psi_m\rangle$

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

The state of a quantum system is not completely known: it is in one of a number of pure states |ψ_i⟩, with respective probabilities p_i, where |ψ_i⟩ ∈ H, p_i ≥ 0 for each i, ∑_i p_i = 1.

- The state of a quantum system is not completely known: it is in one of a number of pure states |ψ_i⟩, with respective probabilities p_i, where |ψ_i⟩ ∈ H, p_i ≥ 0 for each i, ∑_i p_i = 1.
- We call $\{(|\psi_i\rangle, p_i)\}$ an ensemble of pure states or a mixed state.

- The state of a quantum system is not completely known: it is in one of a number of pure states |ψ_i⟩, with respective probabilities p_i, where |ψ_i⟩ ∈ H, p_i ≥ 0 for each i, ∑_i p_i = 1.
- We call $\{(|\psi_i\rangle, p_i)\}$ an ensemble of pure states or a mixed state.
- The density operator:

$$ho = \sum_i p_i |\psi_i\rangle \langle \psi_i|.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- The state of a quantum system is not completely known: it is in one of a number of pure states |ψ_i⟩, with respective probabilities p_i, where |ψ_i⟩ ∈ H, p_i ≥ 0 for each i, ∑_i p_i = 1.
- We call $\{(|\psi_i\rangle, p_i)\}$ an ensemble of pure states or a mixed state.
- The density operator:

$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|.$$

A pure state |ψ⟩ may be seen as a special mixed state {(|ψ⟩, 1)}, its density operator is ρ = |ψ⟩⟨ψ|.

Density Operators

• The trace tr(A) of operator $A \in \mathcal{L}(\mathcal{H})$:

$$tr(A) = \sum_{i} \langle \psi_i | A | \psi_i \rangle$$

where $\{|\psi_i\rangle\}$ is an orthonormal basis of \mathcal{H} .

Density Operators

• The trace tr(A) of operator $A \in \mathcal{L}(\mathcal{H})$:

$$tr(A) = \sum_{i} \langle \psi_i | A | \psi_i \rangle$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

where $\{|\psi_i\rangle\}$ is an orthonormal basis of \mathcal{H} .

• A density operator ρ is a positive operator with $tr(\rho) = 1$.

Density Operators

• The trace tr(A) of operator $A \in \mathcal{L}(\mathcal{H})$:

$$tr(A) = \sum_{i} \langle \psi_i | A | \psi_i \rangle$$

where $\{|\psi_i\rangle\}$ is an orthonormal basis of \mathcal{H} .

- A density operator ρ is a positive operator with $tr(\rho) = 1$.
- The operator ρ defined by any ensemble $\{(|\psi_i\rangle, p_i)\}$ is a density operator. Conversely, any density operator ρ is defined by an (but not necessarily unique) ensemble $\{(|\psi_i\rangle, p_i)\}$.

Postulates of Quantum Mechanics in the Language of Density Operators

A closed quantum system from time t₀ to t is described by unitary operator U depending on t₀ and t:

 $|\psi
angle = U |\psi_0
angle$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Postulates of Quantum Mechanics in the Language of Density Operators

A closed quantum system from time t₀ to t is described by unitary operator U depending on t₀ and t:

 $|\psi
angle = U |\psi_0
angle$

If the system is in mixed states ρ₀, ρ at times t₀ and t, respectively, then:

$$\rho = U\rho_0 U^{\dagger}.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Postulates of Quantum Mechanics in the Language of Density Operators

A closed quantum system from time t₀ to t is described by unitary operator U depending on t₀ and t:

 $|\psi
angle = U |\psi_0
angle$

If the system is in mixed states ρ₀, ρ at times t₀ and t, respectively, then:

$$\rho = U\rho_0 U^{\dagger}.$$

If the state of a quantum system was *ρ* before measurement {*M_m*} is performed, then the probability that result *m* occurs:

$$p(m) = tr\left(M_m^{\dagger}M_m\rho\right)$$

the system after the measurement:

$$\rho_m = \frac{M_m \rho M_m^\dagger}{p(m)}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

 We often need to characterise the state of a subsystem of a quantum system.

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.
- Let *S* and *T* be quantum systems whose state Hilbert spaces are \mathcal{H}_S and \mathcal{H}_T , respectively.

- コン・4回シュービン・4回シューレー

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.
- Let *S* and *T* be quantum systems whose state Hilbert spaces are \mathcal{H}_S and \mathcal{H}_T , respectively.
- The partial trace over system *T*:

 $tr_{T}: \mathcal{L}(\mathcal{H}_{S} \otimes \mathcal{H}_{T}) \to \mathcal{L}(\mathcal{H}_{S})$ $tr_{\mathcal{T}}(|\varphi\rangle\langle\psi|\otimes|\theta\rangle\langle\zeta|) = \langle\zeta|\theta\rangle \cdot |\varphi\rangle\langle\psi|$

- We often need to characterise the state of a subsystem of a quantum system.
- It is possible that a composite system is in a pure state, but some of its subsystems must be seen as in a mixed state.
- Let *S* and *T* be quantum systems whose state Hilbert spaces are \mathcal{H}_S and \mathcal{H}_T , respectively.
- The partial trace over system *T*:

 $tr_T: \mathcal{L}(\mathcal{H}_S \otimes \mathcal{H}_T) \to \mathcal{L}(\mathcal{H}_S)$

 $tr_{\mathcal{T}}(|\varphi\rangle\langle\psi|\otimes|\theta\rangle\langle\zeta|)=\langle\zeta|\theta\rangle\cdot|\varphi\rangle\langle\psi|$

Let ρ be a density operator in H_S ⊗ H_T. Its reduced density operator for system S:

$$\rho_S = tr_T(\rho).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Hilbert Spaces

Linear Operators

Quantum Measurements

Tensor Products

Density Operators

Quantum Operations

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Super-Operators

 Unitary transformations are suited to describe the dynamics of closed quantum systems.

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside, we need a more general notion of quantum operation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside, we need a more general notion of quantum operation.
- ► A linear operator in vector space L(H) is called a *super-operator* in H.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Super-Operators

- Unitary transformations are suited to describe the dynamics of closed quantum systems.
- For open quantum systems that interact with the outside, we need a more general notion of quantum operation.
- ► A linear operator in vector space L(H) is called a *super-operator* in H.
- Let \mathcal{H} and \mathcal{K} be Hilbert spaces. For any super-operator \mathcal{E} in \mathcal{H} and super-operator \mathcal{F} in \mathcal{K} , their tensor product $\mathcal{E} \otimes \mathcal{F}$ is the super-operator in $\mathcal{H} \otimes \mathcal{K}$: for each $C \in \mathcal{L}(\mathcal{H} \otimes \mathcal{K})$,

$$(\mathcal{E}\otimes\mathcal{F})(C)=\sum_k \alpha_k(\mathcal{E}(A_k)\otimes\mathcal{F}(B_k))$$

where $C = \sum_k \alpha_k(A_k \otimes B_k)$, $A_k \in \mathcal{L}(\mathcal{H})$, $B_k \in \mathcal{L}(\mathcal{K})$ for all k.

Let the states of a system at times t₀ and t are ρ and ρ', respectively. Then they must be related to each other by a super-operator *E* depending only on the times t₀ and t:

$$\rho = \mathcal{E}(\rho_0).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let the states of a system at times t₀ and t are ρ and ρ', respectively. Then they must be related to each other by a super-operator *E* depending only on the times t₀ and t:

$$\rho = \mathcal{E}(\rho_0).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• A quantum operation in a Hilbert space \mathcal{H} is a super-operator in \mathcal{H} satisfying:

Let the states of a system at times t₀ and t are ρ and ρ', respectively. Then they must be related to each other by a super-operator *E* depending only on the times t₀ and t:

$$\rho = \mathcal{E}(\rho_0).$$

- A quantum operation in a Hilbert space \mathcal{H} is a super-operator in \mathcal{H} satisfying:
 - 1. $tr[\mathcal{E}(\rho)] \leq tr(\rho) = 1$ for each density operator ρ in \mathcal{H} ;

Let the states of a system at times t₀ and t are ρ and ρ', respectively. Then they must be related to each other by a super-operator *E* depending only on the times t₀ and t:

$$\rho = \mathcal{E}(\rho_0).$$

- A quantum operation in a Hilbert space H is a super-operator in H satisfying:
 - 1. $tr[\mathcal{E}(\rho)] \leq tr(\rho) = 1$ for each density operator ρ in \mathcal{H} ;
 - 2. (Complete positivity) For any extra Hilbert space \mathcal{H}_R , $(\mathcal{I}_R \otimes \mathcal{E})(A)$ is positive provided *A* is a positive operator in $\mathcal{H}_R \otimes \mathcal{H}$, where \mathcal{I}_R is the identity operator in $\mathcal{L}(\mathcal{H}_R)$.

• Let *U* be a unitary transformation in a Hilbert space \mathcal{H} . Define:

 $\mathcal{E}(\rho) = U\rho U^{\dagger}$

for every density operator ρ . Then \mathcal{E} is a quantum operation.

• Let *U* be a unitary transformation in a Hilbert space \mathcal{H} . Define:

$$\mathcal{E}(\rho) = U\rho U^{\dagger}$$

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

for every density operator ρ . Then \mathcal{E} is a quantum operation. • Let $M = \{M_m\}$ be a quantum measurement in \mathcal{H} .

• Let *U* be a unitary transformation in a Hilbert space \mathcal{H} . Define:

$$\mathcal{E}(\rho) = U\rho U^{\dagger}$$

for every density operator ρ . Then \mathcal{E} is a quantum operation. • Let $M = \{M_m\}$ be a quantum measurement in \mathcal{H} .

1. For each *m*, if for any system state ρ before measurement, define

$$\mathcal{E}_m(\rho) = p_m \rho_m = M_m \rho M^{\dagger}$$

where p_m is the probability of outcome *m* and ρ_m is the post-measurement state corresponding to *m*, then \mathcal{E}_m is a quantum operation.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Let *U* be a unitary transformation in a Hilbert space \mathcal{H} . Define:

$$\mathcal{E}(\rho) = U\rho U^{\dagger}$$

for every density operator ρ . Then \mathcal{E} is a quantum operation.

- Let $M = \{M_m\}$ be a quantum measurement in \mathcal{H} .
 - 1. For each *m*, if for any system state ρ before measurement, define

$$\mathcal{E}_m(\rho) = p_m \rho_m = M_m \rho M^{\dagger}$$

where p_m is the probability of outcome *m* and ρ_m is the post-measurement state corresponding to *m*, then \mathcal{E}_m is a quantum operation.

2. For any system state ρ before measurement, the post-measurement state is

$$\mathcal{E}(\rho) = \sum_{m} \mathcal{E}_{m}(\rho) = \sum_{m} M_{m} \rho M_{m}^{\dagger}$$

whenever the measurement outcomes are ignored. Then \mathcal{E} is a quantum operation.

Kraus Theorem

The following statements are equivalent:

1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H} ;

Kraus Theorem

The following statements are equivalent:

- 1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H} ;
- 2. (*System-environment model*) There are an environment system *E* with state Hilbert space \mathcal{H}_E , and a unitary transformation *U* in $\mathcal{H}_E \otimes \mathcal{H}$ and a projector *P* onto some closed subspace of $\mathcal{H}_E \otimes \mathcal{H}$ such that

$$\mathcal{E}(\rho) = tr_E \left[PU(|e_0\rangle\langle e_0|\otimes\rho) U^{\dagger}P \right]$$

for all density operator ρ in \mathcal{H} , where $|e_0\rangle$ is a fixed state in \mathcal{H}_E ;

Kraus Theorem

The following statements are equivalent:

- 1. \mathcal{E} is a quantum operation in a Hilbert space \mathcal{H} ;
- 2. (*System-environment model*) There are an environment system *E* with state Hilbert space \mathcal{H}_E , and a unitary transformation *U* in $\mathcal{H}_E \otimes \mathcal{H}$ and a projector *P* onto some closed subspace of $\mathcal{H}_E \otimes \mathcal{H}$ such that

$$\mathcal{E}(\rho) = tr_E \left[PU(|e_0\rangle \langle e_0| \otimes \rho) U^{\dagger} P \right]$$

for all density operator ρ in \mathcal{H} , where $|e_0\rangle$ is a fixed state in \mathcal{H}_E ;

3. (*Kraus operator-sum representation*) There exists a finite or countably infinite set of operators $\{E_i\}$ in \mathcal{H} such that $\sum_i E_i^{\dagger} E_i \sqsubseteq I$ and

$$\mathcal{E}(\rho) = \sum_{i} E_{i} \rho E_{i}^{\dagger}$$

for all density operators ρ in \mathcal{H} . We write: $\mathcal{E} = \sum_i E_i \circ E_i^{\dagger}$.